

DETERMINATION OF WATER RESOURCE CLASSES, RESERVE AND RESOURCE QUALITY OBJECTIVES STUDY FOR SECONDARY CATCHMENTS A5 – A9 WITHIN THE LIMPOPO WATER MANAGEMENT AREA (WMA 1) AND SECONDARY CATCHMENT B9 IN THE OLIFANTS WATER MANAGEMENT AREA (WMA 2)

EWR REPORT: RIVER ASSESSMENT

VOLUME 3 – ECOLOGICAL WATER REQUIREMENTS REPORT

FINAL DRAFT

APRIL 2024

Published by

Department of Water and Sanitation Private Bag X313 Pretoria, 0001 Republic of South Africa

Tel: (012) 336 7500 / +27 12 336 7500 Fax: (012) 336 6731 / +27 12 336 6731

Copyright Reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report is to be cited as:

Department of Water and Sanitation, South Africa. 2024. Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2): EWR Report – Rivers (Volume 3): Ecological Water Requirements. FINAL DRAFT. WEM/WMA01&02/00/CON/RDM/0123c.

Prepared by:

Myra Consulting (Pty) Ltd in association with Southern Waters, Anchor Research & Monitoring and Delta-H Groundwater Systems (Pty) Ltd.

Cover page photo credit: View of the Luvuvhu River, Makuleke area. Photo from Lee Berger's Lanner Gorge expedition. 29 July 2007. Author Profberger at English Wikipedia

Contract Title:	Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2)								
Report Title:	EWR F	EWR Report – River Assessment (Volume 2) - Ecological Water Requirements							
Authors:	Dr Karl	Dr Karl Reinecke, Dr Alison Joubert, Toriso Tlou							
Internal Reviewer:	Prof Ca	Prof Cate Brown							
DWS Report No.:	WEM/WMA01&02/00/CON/RDM/0123c								
Status of Report:	Final D	raft							
Revision		Date	Report Status						
Rev 0		25 January 2024	Draft						

Final Draft

Professional Service Provider: Myra Consulting (Pty) Ltd Approved for the PSP by:

2 April 2024

	•••••••••••••••••••••••••••••••••••••••
Adhishri Singh	Date
Project Manager	

Department of Water and Sanitation: Chief Directorate: Water Ecosystems Management

Supported by:	Recommended by:
Signature	Signature
Project Manager	Scientific Manager
Approved for the Department of Water and Sanitation by:	
Signature	Date
Director	

Rev 1

DOCUMENT INDEX

The project reports are indicated below.

Bold type indicates this report.

REPORT INDEX	REPORT NUMBER	REPORT TITLE
01	WEM/WMA01&02/00/CON/RDM/0122	Inception Report
02	WEM/WMA01&02/00/CON/RDM/0222	Water Resources Information Gap Analysis Report
03	WEM/WMA01&02/00/CON/RDM/0322	Delineation and Status Quo Report
04	WEM/WMA01&02/00/CON/RDM/0422	Linking the value and condition of the Water Resources Report
05	WEM/WMA01&02/00/CON/RDM/0522	Site Selection and verification EWR Report
06a	WEM/WMA01&02/00/CON/RDM/0123a	EWR Report – Rivers (Vol 1) EcoCategorisation
06b	WEM/WMA01&02/00/CON/RDM/0123b	EWR Report – Rivers (Vol 2) Data Collection and Analysis
06c	WEM/WMA01&02/00/CON/RDM/0123c	EWR Report – Rivers (Vol 3) Ecological Water Requirements
07	WEM/WMA01&02/00/CON/RDM/0223	EWR Report - Groundwater
08	WEM/WMA01&02/00/CON/RDM/0323	EWR Report - Wetlands
09	WEM/WMA01&02/00/CON/RDM/0124	Main EWR Report
10	WEM/WMA01&02/00/CON/RDM/0224	Ecological Base Configuration Scenarios Report
11	WEM/WMA01&02/00/CON/RDM/0324	Scenarios evaluation and Draft Water Resource Classes Report
12	WEM/WMA01&02/00/CON/RDM/0125	Final Scenarios Report
13	WEM/WMA01&02/00/CON/RDM/0225	Evaluation of Resource Unit Report
14	WEM/WMA01&02/00/CON/RDM/0325	Preliminary Resource Quality Objectives and Confidence Report
15	WEM/WMA01&02/00/CON/RDM/0425	Monitoring Programme to support RQOs and Reserve Implementation Report
16	WEM/WMA01&02/00/CON/RDM/0525	Water Resources Classes, Reserve and RQOs Gazette Template
17	WEM/WMA01&02/00/CON/RDM/0625	Project Close-Out Report

ACRONYMS

ACRONYM	DESCRIPTION
ASPT	Average Score per Taxon
BF	Base Flow Separated
BHN	Basic Human Needs
BN	Bayesian Network
DRIFT	Downstream Response to Instream Flow Transformation
Dry	Dry Season
DSS	Decision Support System
DWS	Department of Water and Sanitation
EC	Ecological Category
EFlows	Environmental Flows
EI	Ecological Importance
EIS	Ecological Importance and Sensitivity
ES	Ecological Sensitivity
EWR	Ecological Water Requirement
GSM	Gravel/Sand/Mud
GVA	Gross Value Added
GWSA	Groundwater Source Areas
IWMI	International Water Management Institute
KNP	Kruger National Park
LIMCOM	Limpopo Watercourse Commission
LoEs	Lines of Evidence
MAR	Mean Annual Runoff
МСМ	Million Cubic Metres
MIRAI	Macroinvertebrate Response Assessment Index
MSEZ	Musina-Makhado Special Economic Zone
NAT	Natural
nMAR	Naturalised Mean Annual Runoff
PES	Present Ecological Status
PO ₄ -P	Orthophosphate
PRS	Present day
RDM	Resource Directed Measures
REC	Recommended Ecological Category
RQOs	Resource Quality Objectives
SA	South Africa

ACRONYM	DESCRIPTION
SASS	South African Scoring System
SC	Secondary Catchment
SnA	Southern Africa
SS	Synthetic Scenarios
SWA	Source Water Areas
SWSA	Strategic Water Source Areas
TIN	Total Inorganic Nitrogen
ToR	Terms of Reference
TPCs	Thresholds of Potential Concern
USAID	United States Agency for International Development
WMA	Water Management Area
WQ	Water Quality
WRC	Water Research Commission
WTW	Water Treatment works
WWTW	Waste Water Treatment Works

UNITS OF MEASUREMENT

%	percentage
m	meter
m³/s	metres cubed per second
m ³ x 10 ⁶	Million cubic meters
Mm³/a	Million cubic meters per annum
N/m ²	Newtons per square meter

ABBREVIATIONS

Q Discharge

EXECUTIVE SUMMARY

The overall objective of the project is to classify and determine the Reserve and Resource Quality Objectives for all significant water resources in the secondary catchments (SCs) (A5-A9) of the Limpopo Water Management Area (WMA) and B9 in the Olifants WMA. The project study area spans six river catchments: Lephalala, Mogalakwena, Sand, Nzhelele and Luvuvhu in the Limpopo WMA and the Shingwedzi in the Olifants WMA.

The rivers included in the Environmental Water Requirement (EWR) assessment were:

- Lephalala River
- Rietfontein River
- Olifantspruit River
- Mogalakwena River
- Kolope River
- Sand River
- Nzhelele River
- Nwanedi River
- Mutshindudi River
- Latonyanda River
- Luvuvhu River
- Mutale River.

For the EWR assessment, the DRIFT EWR Model, hereafter referred to as DRIFT-Limpopo, was set up for 14 EWR sites (**Table E1**), i.e., one or more on each of the study rivers.

Table E1: Location and co-ordinates of the river EWR sites

No.	Node	River	EWR (DRIFT) Code	Quaternary Catchment	Latitude	Longitude
1	Riv11	Lephalala	1_Lephalala	A50B	23°59'11"S	28°24'20"E
2	Rvi1	Rietfontein	2_Rietfontein	A63C	22°34'06"S	28°37'31"E
3	Ri1	Olifantspruit	3_Olifantspruit	A61B	24°39'46"S	28°28'31"E
4	Ri5	Mogalakwena	4_Mogalakwena1	A62B	23°54'55"S	28°43'59"E
5	Ri14	Mogalakwena	5_Mogalakwena2	A63A	23°09'05"S	28°40'44"E
6	Riv32	Kolope	6_Kolope	A63E	22°13'50"S	29°14'56"E
7	Ri20	Sand	7_Sand	A71D	23°22'03"S	29°35'41"E
8	Ri27	Nzhelele	8_Nzhelele	A80G	22°28'52"S	30°15' 45"E
9	Ri28	Żwanedi	9_ Nwanedi	A80J	22°30'50"S	30°26'52"E
10	Riii6	Latonyanda	10_Latonyanda	A91D	23°02'51"S	30°13'54"E
11	Ri30	Mutshindudi	11_Mutshindudi	A91G	22°53'18"S	30°35'18"E
12	Ri32	Luvuvhu	12_Luvuvhu	A91H	22°45'42"S	30°53'41"E
13	Ri33	Mutale	13_Mutale1	A92B	22°40'26"S	30°42'11"E
14	Ri34	Mutale	14_Mutale2	A92D	22°26'17"S	31°04'39"E

The Present Ecological Status (PES) for each of the disciplines at each EWR site as well as the overall PES for each EWR site is given in **Table E2**.

		EWR site												
Discipline PES	1_Lephalala	2_Rietfontein	3_Olifantspruit	4_Mogalakwena1	5_Mogalakwena2	6_Kolope	7_Sand	8_Nzhelele	9_N Ňwanedi	10_Latonyanda	11_Mutshindudi	12_Luvuvhu	13_Mutale1	14_Mutale2
Hydrology	В	С	А	С	C/D	D	В	C/D	B/C	С	В	С	А	А
Geomorphology	С	С	С	С	D	D	С	C/D	D	С	С	D	С	С
Water quality	В	B/C	В	С	B/C	B/C	D	С	С	A/B	B/C	В	В	В
Vegetation	С	A/B	D	C/D	С	С	С	С	С	C/D	С	С	B/C	В
Invertebrates	B/C	В	B/C	С	С	B/C	С	С	С	B/C	С	B/C	С	С
Fish	D/E	A/B	С	С	A/B	D	С	В	B/C	B/C	С	С	С	С
PES (2022)	С	B/C	С	С	С	С	С	С	С	С	С	С	С	С

Table E2: PES for each discipline at each EWR site and the overall PES of the EWR site

Four scenarios were modelled in DRIFT-Limpopo:

- PES (2022), which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at 2022 levels.
- Reference, which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at *c*. 1900 levels.
- Future1, which overlaid planned 2050 water resource developments on PES (2022).
- Future2, which overlaid a dry future climate scenario on Future1.

DRIFT-Limpopo was calibrated against the PES (2022) and Reference scenarios. The Future1 and Future2 scenarios were then run through DRIFT-Limpopo to predict the effects of additional planned water-resource developments without and with a dry climate, respectively. The water-resource development plans differ between the catchments, and in some catchments there are no future water developments planned (**Table E3**) (DWS Technical Task Team meeting June 2023, pers.comm T. Nditwani 2023).

The factors considered in the Future1 scenario (**Table E4**) include increasing return flows from Waste Water Treatment Works (WWTW), raising existing dams or building new dams (increased storage), increasing releases from dams for domestic or agricultural supply, decreasing releases from dams because of increasing demands, increasing flows from inter-basin transfers, and increasing domestic, mining, industrial or agricultural water use (DWS Technical Task Team meeting June 2023, pers.comm T. Nditwani 2023).

Table E3: EWR sites where developments are planned

EWR site	Additional planned water-resource development
1_Lephalala	Yes
2_Rietfontein	No
3_Olifantspruit	No
4_Mogalakwena1	Yes
5_Mogalakwena2	Yes
6_Kolope	No
7_Sand	Yes
8_Nzhelele	Yes
9_ Nwanedi	Yes
10_Latonyanda	No
11_Mutshindudi	Yes
12_Luvuvhu	Yes
13_Mutale1	Yes
14_Mutale2	Yes

Table E4: Factors relevant for the Future1 scenario

EWR site	Increased return flows	New dam storage/ Increased dam storage	Incoming inter-basin transfers	Transfers of return flows out of catchment	Increased water use
1_Lephalala					х
4_Mogalakwena1	х				
5_Mogalakwena2	х				
7_Sand	х		х		х
8_Nzhelele		х			х
9_Nwanedi					х
11_Mutshindudi		х			х
12_Luvuvhu	х			х	х
13_Mutale1		х			х
14_Mutale2		Х			

The Ecological Importance and Sensitivity (EIS) of all the sites was **MODERATE** but despite this, taking into account the other site-specific factors discussed, Recommended Ecological Categories (RECs) of one-half category higher are recommended at four of the sites along with suggestions to better manage the non-flow related causes of the PES as follows:

- 1_Lephalala: PES = C, aim for a REC of a B/C category by clearing the exotic plants and re-stocking indigenous fish.
- 2_Rietfontein: maintain the PES = REC = a B/C category.

- 3_Olifantspruit: PES = C, aim for a REC of a B/C category by clearing exotic plants and curtail further future water use to support inflows into the Nyl River for the Nyl River floodplain.
- 4_Mogalakwena1: maintain the PES = REC = a C category.
- 5_Mogalakwena2: maintain the PES = REC = a C category.
- 6_Kolope: PES = C, aim for a REC of a B/C category by continuing the efforts to curb bank instability (gabion dams) and monitor the re-establishment of the riparian vegetation.
- 7_Sand: maintain the PES = REC = a C category.
- 8_Nzhelele: maintain the PES = REC = a C category.
- $9_{\dot{N}}$ waned: maintain the PES = REC = a C category.
- 10_Latonyanda: maintain the PES = REC = a C category.
- 11_Mutshindudi: maintain the PES = REC = a C category, which will require removing the exotic plants and in particular *Mimosa pigra* that has the potential to travel downstream and grow on the Luvuvhu River Floodplain.
- 12_Luvuvhu: PES = C, aim for a REC of a B/C category by better managing nutrients in WWTW, sand mining, and clearing the exotic plants.
- 13_Mutale1: maintain the PES = REC = a C category.
- 14_Mutale2: maintain the PES = REC = a C category.

The outcomes of the scenario analyses were used to guide the options for EWRs (Table E5):

- For the four rivers where no additional water-resource developments are planned under the Future1 scenario, and where there are no regulating structures upstream, the PES (2022) flow regime was used as EWRs.
- For the six rivers where additional water-resource developments are included in Future1 but the expected Ecological Status is either the same or better than the present state, the PES (2022) and Future1 flow regimes were used as EWRs for the REC; PES (2022) flows for predevelopment and Future1 flows for post-development.
- For the four rivers where additional water-resource developments are included in Future1 and the expected Ecological Status under Future1 is poorer than PES, Synthetic Scenarios (SS) were created to allow for development and predict a better Ecological Status than Future1. The PES (2022) flow regime is given as EWRs for pre-development with two options for postdevelopment: the Future1 and Synthetic Scenario flow regimes.

The Synthetic Scenarios explored the effects of increasing baseflow in the dry season (mostly) to test whether the predicted Ecological Status could be improved. The increases were unrelated to the planned developments and were designed to test whether it was possible to improve the ecological outcome of the flow scenario to be better than that predicted by Future1, the water resource developments as planned. This was done to offer an alternative to the planned developments with a view to maintain better ecological conditions at the EWR sites.

Table E5: RECs and outcomes for the PES (2022), Future1 and Synthetic Scenario flow regimes at each EWR site (Mod = moderate)

Future development	EWR site	PES	EIS	REC	Future1	Future2	Synth Scena	etic ario	Management actions* recommended?
Yes / No					Outco	me of scen regime	W	Yes / No	
	2_Rietfontein	B/C	Mod	B/C	B/C	B/C			No
No	3_Olifantspruit	С	Mod	B/C	С	C/D			Yes
INO	6_Kolope	С	Mod	B/C	C	C/D			Yes
	10_Latonyanda	С	Mod	С	С	С			No
	1_Lephala	С	Mod	B/C	C	C/D			Yes
	4_Mogalakwena1	С	Mod	С	B/C	B/C			No
	5_Mogalakwena2	С	Mod	С	С	С			No
	7_Sand	С	Mod	С	B/C	B/C			No
Vee	11_Mutshindudi	С	Mod	С	С	C/D			Yes
165	12_Luvuvhu	С	Mod	B/C	C	C/D			Yes
	8_Nzhelele	С	Mod	С	D	D/E	SS1	C/D	No
	9_Nwanedi	С	Mod	С	D	D/E	SS1	C/D	No
	13_Mutale1	С	Mod	С	C/D	D	SS2	С	No
	14_Mutale2	C	Mod	C	C/D	D	SS1	C	No

* Management actions were recommended for EWR sites where the REC was one half category higher than the PES where non-flow related actions could improve the PES. For example, at 1_Lephalala the PES was brought down by the presence of exotic plants and few indigenous fish. The management actions recommended were to clear the exotic plants and to re-stock indigenous fish.

A summary of ecological water requirements for the 14 assessed river sites are provided in (**Table E6**) with:

- Basic statistics for the naturalised (reference) flows, viz:
 - Naturalised Mean Annual Runoff (nMAR)
- The EWR and its components for maintenance of the REC as volumes and percentages of naturalized, viz.:
 - o Maintenance lowflows
 - Drought lowflows
 - Maintenance highflows, which are floods that occur at least once a year, *viz*.: withinyear flood events
- Total monthly volume (maintenance lowflows and highflows)
- Magnitude, duration and timing of within-year floods.

Table E6: Summary of Ecological Water Requirements

Future			REC		Ecological	Management			Ecological	Water Red	quirements	;	
development?	EWR site	EIS		Scenario	category	actions?	nMAR	Low	%	High	%	Total	%
Yes / No					category	Yes / No	MCM	МСМ	nMAR	МСМ	nMAR	MCM	nMAR
Vec	1 Lephala	Moderate	B/C	PES (2022)	C	Vec	66 217	37.824	57.1	7.872	11.9	45.696	69
163		Moderate	0/0	Future1	U	163	00.217	35.825	54.1	7.773	11.7	43.557	65.8
No	2_Rietfontein	Moderate	B/C	PES (2022)	B/C	No	0.181	0.057	31.7	0.010	5.3	0.067	40
NO	3_Olifantspruit	Moderate	B/C	PES (2022)	С	Yes	7.815	3.385	43.3	2.616	33.5	6.002	76.8
	1 Mogalakwena1	Moderate	C	PES (2022)	C	No	130 390	26.120	20.0	6.368	4.9	32.488	24.9
Voc		Moderate	U	Future1	B/C	NO	130.330	29.828	22.9	7.985	6.1	37.792	29
165	5 Magalakwana2	Modorato	C	PES (2022)	C	No	199.046	39.096	20.7	4.343	2.3	43.439	23
	5_IVIOgalakwellaz	Moderate	C	Future1	0	NO	100.940	39.671	21	4.755	2.5	44.516	23.6
No	6_Kolope	Moderate	B/C	PES (2022)	С	Yes	1.998	0.349	17.5	0.017	0.9	0.366	18.3
	7_Sand	Moderate	C	PES (2022)	С	No	22 125	4.125	17.9	1.421	6.1	5.546	24
			C	Future1	B/C		23.125	22.276	96.3	96.3 6.674 28.9 28.95	125.2		
	8_Nzhelele	Moderate		PES (2022)	С	No		41.595	42.3	8.662	8.8	50.257	51.1
			С	Future1	D		98 / 2	24.584	25	4.951	5	29.535	30
Yes				Synthetic Scenario1	C/D		50.42	27.482	25 27.9	4.902	5	32.383	32.9
		Moderate		PES (2022)	С			11.872	36.4	4.42	13.6	16.292	50
	9 Nwanedi		C	Future1	D	No	32 578	8.517	26.1	3.453	10.6	11.97	36.7
	9_INWanegi		le C	Synthetic Scenario1	C/D		32.578	9.087	27.9	3.432	10.5	12.52	38.4
No	10_Latonyanda	Moderate	С	PES (2022)	С	No	23.206	13.507	58.6	3.2	13.7	16.785	72.3
	11 Mutchindudi	Modorato	C	PES (2022)	C	Voc	56 420	24.108	42.7	16.703	29.605	40.811	72.335
	TT_IVIUISTIITUUUI	Moderate	C	Future1	C	165	30.420	20.591	36.5	12.5	22.2	33.091	58.7
	10 Lunandru	Modorato	P/C	PES (2022)	C	Vee	200 014	114.146	29.4	37.773	9.7	151.92	39.1
		Moderate	D/C	Future1	C	Tes	300.014	87.104	22.5	29.547	7.6	116.651	30.1
				PES (2022)	С			56.109	46.1	31.487	25.8	87.596	71.9
Yes	13 Mutale1	Moderate	C	Future1	C/D	No	121 822	38.751	31.8	26.933	22.1	65.684	53.9
		Woderate		Synthetic Scenario2	С	INO	121.022	40.716	33.4	27.445	22.5	68.161	56
				PES (2022)	С			67.063	43.8	36.702	24	103.765	67.8
	14 Mutale2	Moderate	C	Future1	C/D	No	153 008	49.569	32.4	32	20.9	81.565	53.3
		Moderale	Ŭ	Synthetic Scenario1	С	NO	100.090	51.662	33.8	31.964	20.9	83.626	54.6

The rivers in the study area are part of the transboundary Limpopo River Basin, which is shared by South Africa, Botswana, Zimbabwe and Mozambique and falls under the ambit of the Limpopo Watercourse Commission (LIMCOM). An EWR assessment (O'Brien *et al.* 2022) was recently completed on the watercourse and the results from this study are outlined below.

There are five LIMCOM study sites that are all situated at the junction of these rivers in South Africa with the Limpopo River:

- The lower Lephalala River (site code LEPH-A50H-SEEKO)
- The lower Mogalakwena River (MOGA-A63D-LIMPK)
- The lower Sand River (SAND-A71K-R508B)
- The lower Luvuvhu River (LUVU-A91K-OUTPO)
- The Shingwedzi River (SHIN-B90H-POACH).

The overall PES of the LIMCOM sites was determined by combining scores for invertebrates, fish and vegetation and are provided in **Table E7** below.

Table E7: Summary of PES and REC for the LIMCOM study sites

E Elevereite	Divor	Invertebrates		Fish		Vegetation		Overall	
E-FIOW SITE	River	PES	REC	PES	REC	PES	REC	PES	REC
LEPH-A50H-SEEKO	Lephalala River	C/D	С	D	С	С	С	С	С
MOGA-A36D-LIMPK	Mogalakwena River	D	D	D	D	С	С	С	С
SAND-A71K-R508B	Sand River	С	С	C/D	С	B/C	С	С	С
LUVU-A91K-OUTPO	Luvuvhu River	С	С	С	С	В	С	С	С
SHIN-B90H-POACH	Shingwedzi River	B/C	С	D	С	В	С	С	B/C

The EWRs for the LIMCOM sites are summarised in Table E8.

Table E8: Summary of EWRs for the LIMCOM study sites

Rivers	E-Flow site	nMAR (10 ⁶ m³)	%Drought	%Baseflows	%Floods	%Total
Lephalala River	LEPH-A50H-SEEKO	142	8.79	18.09	21.02	39.11
Mogalakwena River	MOGA-A36D-LIMPK	243	13.98	19.24	17.82	37.06
Sand River	SAND-A71K-R508B	74	0	9.02	23.41	32.43
Luvuvhu River	LUVU-A91K-OUTPO	560	12.29	24.1	15.97	40.06
Shingwedzi River	SHIN-B90H-POACH	87	0.93	15.57	16.34	31.91

For the WRCS, EWR information is required at a wider resolution so that the consequences of water resource developments, and other relevant scenarios, can be understood up- and downstream of the EWR sites, and on significant tributaries. The 14 EWRs from the DRIFT assessment (this study) and the 5 from the LIMCOM study (O'Brien *et al.* 2022) will go forward into the WRCS process. There are 75 nodes identified in the study area and 19 of these are where detailed EWRs have been determined. There are therefore 56 nodes that need EWRs for the WRCS process. For this purpose, the biophysical and hydrological characteristics of the rivers at the 75 nodes will be compared and the rivers will be grouped by similarity. Those with characteristics that are similar to a nearby EWR site will use the same EWR configuration as the EWR site. This may be a site on the same main-stem river or on a tributary with similar characteristics. The others will be generated using the Revised Desktop model (Birkhead et al. 2019).

A water balance will be undertaken that links all the nodes with one another in a downstream direction, so that the consequences of changes in flow on the PES of the rivers can be considered from upstream to downstream, and in the incremental tributaries. The water balance using the EWR data for 75 nodes will be reported on in the Ecological Sustainable Baseline Configuration Report (DWS 2024, Report WEM/WMA01&02/00/CON/RDM/0224).

Table of Contents

D	00	UUN	VENT INDEXI	ii
A	CF	RON	NYMSi	v
U	Nľ	тѕ	OF MEASUREMENT	v
A	BE	BRE	EVIATIONS	v
E	XE	ECU	ITIVE SUMMARY	/i
L	IS ⁻	го	F FIGURESxv	ii
L	IS ⁻	το	F TABLES xi	x
1		Intr	roduction	1
	1.	1	Background	1
	1.	2	Objectives of the study	1
	1.	3	Study area	2
	1.	4	The LIMCOM study	5
	1.	5	Contents of the EWR Reports - Rivers	5
		1.5.	.1 Eco-Categorisation Report (Volume 1)	6
		1.5.	2 Data Collection and Analysis Report (Volume 2)	7
		1.5.	.3 Ecological Water Requirements Report (Volume 3)	8
	1.	6	EWR assessment method	8
2		EW	/R sites, zones and ECOCATEGORISATION1	0
2	2.	EW 1	/R sites, zones and ECOCATEGORISATION1 EWR sites and zones	0 0
2	2. 2.	EW 1 2	/R sites, zones and ECOCATEGORISATION	0 0 1
2	2. 2.	EW 1 2 2.2.	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 .1 Present Ecological Status (PES 2022)	0 0 1
2	2. 2.	EW 1 2 2.2. 2.2.	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1	0 0 1 1 2
2	2. 2.	EW 1 2.2. 2.2. 2.2.	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1	0 0 1 1 2 4
2 3	2. 2.	EW 1 2.2. 2.2. 2.2. 0ve	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Present Ecological Status (PES 2022) 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1 erview of DRIFT-Limpopo 1	0 1 1 2 4 6
2	2. 2. 3.	EW 1 2.2. 2.2. 2.2. 0vo 1	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Eco-Categorisation 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1 erview of DRIFT-Limpopo 1 Modules 1	0 1 1 2 4 6 6
2	2. 2. 3.	EW 1 2 2.2. 2.2. 2.2. 0ve 1 2	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Eco-Categorisation 1 .1 Present Ecological Status (PES 2022) .2 Ecological Importance and Sensitivity .3 Recommended Ecological Category .1 PRIFT-Limpopo 1 Modules 1 1 .3 1 <t< th=""><th>0 1 1 2 4 6 6 7</th></t<>	0 1 1 2 4 6 6 7
3	2. 2. 3. 3.	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3	Image: WR sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Ecological Status 1 Image: I	0 1 1 2 4 6 7 7
3	2. 2. 3. 3. 3.	EW 1 2 2.2. 2.2. 0 0 0 1 2 3 4	Image: Problem Sites and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 Image: Present Ecological Status (PES 2022) 1 Image: Present Ecological Status (PES 2022) 1 Image: Present Ecological Importance and Sensitivity 1 Image: Problem Size (PES 2022) 1 Image: Problem Size (PES 2023) 1 Image: Problem Size (PES 2023) 1 Image: Problem Size (PES 2023) 1 Image: Pro	0 1 1 2 4 6 7 7 7
3	 2. 3. 3. 3. 3. 	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3 4 5	Image: Problem State St	0 1 1 2 4 6 7 7 8
3	2. 2. 3. 3. 3. 3. 3.	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3 4 5 3.5.	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1 erview of DRIFT-Limpopo 1 Modules 1 Representative reaches and sites 1 Disciplines 1 Hydro-biological flow seasons 1 Indicators and links 1 .1 Hydrology input data and indicators 1	0 1 1 2 4 6 7 7 8 8 8
3	2. 2. 3. 3. 3. 3. 3.	EW 1 2 2.2. 2.2. 2.2. 0vo 1 2 3 4 5 3.5. 3.5.	Image: Provide the system 1 Image: Provid	0 1 1 2 4 6 6 7 7 8 8 8 8
3	2. 2. 3. 3. 3. 3. 3.	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3 4 5 3.5. 3.5. 3.5. 6	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Ecological Status 1 Present Ecological Status (PES 2022) 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1 .3 Recommended Ecological Category 1 .3 Representative reaches and sites 1 Modules 1 1 Bydro-biological flow seasons 1 1 Indicators and links 1 1 .1 Hydrology input data and indicators 1 .2 Internal eco-social indicators 1 .3 Response curves 2	0 1 1 2 4 6 6 7 7 8 8 8 8 2
3	2. 2. 3. 3. 3. 3. 3. 3.	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3.4 5 3.5. 3.5. 6 7	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Image: Ecological Status (PES 2022) 1 .1 Present Ecological Status (PES 2022) 1 .2 Ecological Importance and Sensitivity 1 .3 Recommended Ecological Category 1 erview of DRIFT-Limpopo 1 Modules 1 Representative reaches and sites 1 Disciplines 1 Hydro-biological flow seasons 1 Indicators and links 1 .1 Hydrology input data and indicators 1 .2 Internal eco-social indicators 1 .2 Major assumptions and limitations 2	0 1 1 2 4 6 6 7 7 8 8 8 2 4
3	2. 2. 3. 3. 3. 3. 3. 3.	EW 1 2.2.2. 2.2. 2.2. 0ve 1 2 3 4 5 3.5. 3.5. 6 7 Cui	/R sites, zones and ECOCATEGORISATION 1 EWR sites and zones 1 Eco-Categorisation 1 In Present Ecological Status (PES 2022) 1 Image:	0 1 1 2 4 6 6 7 7 8 8 8 2 4 s

25 29 29 29 29 29 29 33 33 33 33 33
25 29 29 29 29 33 33 33 33 33
29 29 29 29 33 33 33 33 33
29 33 33 33 33 33
33
33 33 33 35
33 33 35
33 35
35
-
35
35
35
36
36
40
40
40
40
42
 42 42
42 42 42
42 42 42 42
•

7	7.2	EW	R summary tables	
	7.2	2.1	1_Lephalala	64
	7.2	2.2	2_Rietfontein	67
	7.2	2.3	3_Olifantspruit	68
	7.2	2.4	4_Mogalakwena1	69
	7.2	2.5	5_Mogalakwena2	71
	7.2	2.6	6_Kolope	73
	7.2	2.7	7_Sand	74
	7.2	2.8	8_Nzhelele	76
	7.2	2.9	9_Nwanedi	79
	7.2	2.10	10_Latonyanda	82
	7.2	2.11	11_Mutshindudi	83
	7.2	2.12	12_Luvuvhu	85
	7.2	2.13	13_Mutale1	87
	7.2	2.14	14_Mutale2	90
-	7.3	Sur	nmary	
8	LI	мсо	M study summary of Eco-Categorisation and EWRs	
8	8.1	Lep	halala River site LEPH-A50H-SEEKO	
8	B.2	Mo	galakwena River site MOGA-A36D-LIMPK	
2	8.3	Sai	ad River site SAND-A71K-R508B	104
	о.о	Lus		109
	5.4			
5	8.5	Shi	ngwedzi River sife SHIN-B90H-POACH	
8	B.6	Sur	nmary of Eco-Categorisation	
8	B.7	Eco	ological Water Requirements	
	8.7	7.1	EWRs for LEPH-A50H-SEEKO	118
	8.7	7.2	EWRs for MOGA-A36D-LIMPK	119
	8.7	7.3	EWRs for SAND-A71K-R508B	120
	8.7	7.4	EWRs for LUVU-A91K-OUTPO	121
	8.7	7.5	EWRs for SHIN-B90H-POACH	122
9	Da	ata ta	ken forward into next phase of work	
10	Re	efere	1ces	
Ap	per	ndix /	A. Executive Summary from the LIMCOM E-flows report (O	'Brien <i>et al</i> . 2022b)
Ap	per	ndix l	B. Rivers EWR Team	

LIST OF FIGURES

Figure 1-1	Map of the study area 4
Figure 1-2:	Generic steps to determine the Ecological Reserve
Figure 1-3	The seven-step DRIFT process
Figure 3-1:	Arrangement of modules in DRIFT-Limpopo (light-brown shading) and inputs/ outputs
	from/ to external models/ data sources16
Figure 3-2:	Discipline-level assessment framework for EWR sites in DRIFT-Limpopo. Each line is
	represented by a response curve
Figure 3-3	: A snap-shot from DRIFT-Limpopo showing one of the geomorphology response
	curves and explanations for backwaters and secondary channels at 1_Lephalala 22
Figure 4-1:	Lephalala River Catchment – Existing Water Resources
Figure 4-2:	Mogalakwena River catchment demands and existing water resource infrastructure
Figure 4-3:	Sand River Catchment – Demands and Existing Water Resource Infrastructure 34
Figure 4-4:	Nzhelele River Catchment – Demands and Existing Water Resource Infrastructure37
Figure 4-5	: Mutale / Luvuvhu River Catchments - Demands and Existing and Potential Water
	Resources Infrastructure
Figure 4-6:	Shingwedzi River Catchment – Demands and Existing and Potential Water Resource
	Infrastructure
Figure 6-1	PES (2022), Future1 and Future2: Social use and ecosystem value predictions 59
Figure 7-1	Flow duration curve for PES (2022), Future1 and Synthetic Scenarios 1, 2 and 361
Figure 7-3	Changes predicted in Ecological Status at 8_Nzhelele (L) and 9_Nwanedi (R) 62
Figure 7-4	Changes predicted in Ecological Status at 13_Mutale1 (L) and 14_Mutale2 (R) 63
Figure 7-5	Average monthly low flows for PES (2022), Future1 and Synthetic Scenarios 1 or 2
Figure 8-1	: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m ³ /s)
	representing the natural (NAT), present day (PRS) and base flow separated (BF)) for
	the Lephalala River (LEPH-A50H-SEEKO)
Figure 8-2:	(a) View of the channel from the right bank, (b) gravel from elongated gravel bars, (c)
	channel view from left bank, (d) recently deposited sediment from flood bench 98
Figure 8-3:	Exceedance tables and box and whisker charts for (A) natural, (B) present and (C)
	EWR scenario for the LEPH-A50H-SEEKO site. (The x in the box and whisker plots
- : 0.4	shows the mean value)
Figure 8-4	: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m ⁻ /s)
	representing the natural (NAT), present day (PRS) and base flow separated (BF)) for
-	the Mogalakwena River (MOGA-A36D-LIMPK)
rigure 8-5:	(a) An upstream view of the sandy channel, (b) coarse sand on the channel bed, (c)
	eroding left bank, (d) gravel deposit on right flood bench
Figure 8-6:	Exceedance tables and box and whisker charts for (A) natural, (B) present and (C)
	EVVK scenario for the MUGA-A36D-LIMPK site. (The x in the box and whisker plots
	snows the mean value)

Figure 8-7: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m ³ /s)
representing the natural (NAT), present day (PRS) and base flow separated (BF)) for
the Sand River (SAND-A71K-R508B)104
Figure 8-8: (a) View of left bank with gravel and sand bar in fore ground, (b) view from right bank,
(c) high flow channel and vegetated sand bars, (d) gravel bar, (e) coarse sand from
channel
Figure 8-9: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C)
EWR scenario for the SAND-A71K-R508B site. (The x in the box and whisker plots
shows the mean value) 107
Figure 8-10: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m ³ /s)
representing the natural (NAT), present day (PRS) and base flow separated (BF)) for
the Luvuvhu River (LUVU-A91K-OUTPO)
Figure 8-11: (a) View from the left bank, (b) boulder and cobble along the edge of the slow riffle,
(c) reeds growing on elongated boulder and riffle high points, (d) cobble and sand
matrix out of current, (e) coarse sand trapped in between cobbles in riffle 109

LIST OF TABLES

Table 1-1	Definitions of the ecological categories (Kleynhans 1996)2
Table 2-1:	Location and co-ordinates of the river EWR sites10
Table 2-2:	PES (2022) of all river components and the EWR sites overall
Table 2-3:	Determinants rated to determine EIS 12
Table 2-4:	EIS rating for each biological discipline and overall for the EWR site (H = High, M =
	Moderate; L = Low)
Table 2-5:	Hydrological metrics at EWR sites13
Table 2-6:	PES, EIS and REC for EWR sites14
Table 3-1:	DRIFT-Limpopo hydrology and hydraulic input data and indicators
Table 3-2:	DRIFT-Limpopo eco-social indicators21
Table 3-3:	DRIFT severity ratings and their associated gains and losses – a negative score means
	a loss in abundance relative to PES (2022), a positive means a gain
Table 4-1:	Current water requirements and sources of supply in the Lephalala, Mogalakwena and
	Sand River catchments
Table 4-2:	Return Flow Analysis in the Lephalala, Mogalakwena and Sand River catchments. 30
Table 4-3:	Water Requirement Projections for the Lephalala, Mogalakwena and Sand River
	catchments
Table 4-4:	Current Water Requirements of the Nzhelele, Nwanedi, Mutale, Luvuvhu and
	Shingwedzi
Table 4-5:	Water Requirements Projections for the Nzhelele, Nwanedi, Mutale, Luvuvhu and
	Shingwedzi
Table 5-1:	EWR sites where Future1 developments are planned
Table 5-1: Table 5-2:	EWR sites where Future1 developments are planned
Table 5-1: Table 5-2: Table 5-3	Shingwedzi
Table 5-1: Table 5-2: Table 5-3 Table 5-4:	Sningwed21 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5:	Sningwed21 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6:	Shingwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1:	Sningwed21 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1:	Sningwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2:	Sningwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 54
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2:	Sningwedzi39EWR sites where Future1 developments are planned44Factors relevant for the Future1 scenario45Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios45Ecologically-relevant flow indicators in DRIFT-Limpopo (median values)47Icons for social use52Definitions of colours used to report change in the social-use icons53The ecological categories predicted under the PES (2022), Future1 and Future2 flowscenarios, without improved management54PES (2022) and Future1 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2:	Sningwed2139EWR sites where Future1 developments are planned44Factors relevant for the Future1 scenario45Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios45Ecologically-relevant flow indicators in DRIFT-Limpopo (median values)47Icons for social use52Definitions of colours used to report change in the social-use icons53The ecological categories predicted under the PES (2022), Future1 and Future2 flowscenarios, without improved management54PES (2022) and Future1 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =Macroinvertebrates, F = Fish)55
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3:	Shingwedzi39EWR sites where Future1 developments are planned44Factors relevant for the Future1 scenario45Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios45Ecologically-relevant flow indicators in DRIFT-Limpopo (median values)47Icons for social use52Definitions of colours used to report change in the social-use icons53The ecological categories predicted under the PES (2022), Future1 and Future2 flowscenarios, without improved management54PES (2022) and Future1 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =Macroinvertebrates, F = Fish)55PES (2022) and Future2 predicted discipline-specific ecological conditions (EC =
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-2:	 Shingwedzi System Stress where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = Macroinvertebrates, F = Fish) PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = Macroinvertebrates, F = Fish)
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3:	Shingwed2139EWR sites where Future1 developments are planned44Factors relevant for the Future1 scenario45Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios45Ecologically-relevant flow indicators in DRIFT-Limpopo (median values)47Icons for social use52Definitions of colours used to report change in the social-use icons53The ecological categories predicted under the PES (2022), Future1 and Future2 flowscenarios, without improved management54PES (2022) and Future1 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =Macroinvertebrates, F = Fish)55PES (2022) and Future2 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =Macroinvertebrates, F = Fish)55PES (2022) and Future2 predicted discipline-specific ecological conditions (EC =Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I =Macroinvertebrates, F = Fish)57Macroinvertebrates, F = Fish)57
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3: Table 7-1	Shingwed21 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 57
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3: Table 7-1	Shingwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 56 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 57
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3: Table 7-1 Table 7-2 Table 7-2	Shingwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 52 Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3: Table 7-1 Table 7-2 Table 7-3	Shingwed21 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 52 Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 52 Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 56 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 60 EWRs to maintain a C category at 1_Lephalala (PES 2022 flow scenario) 65
Table 5-1: Table 5-2: Table 5-3 Table 5-4: Table 5-5: Table 5-6: Table 6-1: Table 6-2: Table 6-3: Table 7-1 Table 7-2 Table 7-3 Table 7-4	Shingwedzi 39 EWR sites where Future1 developments are planned 44 Factors relevant for the Future1 scenario 45 Monthly flow volumes (Mm ³) in the PES (2022) and Future1 scenarios 45 Ecologically-relevant flow indicators in DRIFT-Limpopo (median values) 47 Icons for social use 52 Definitions of colours used to report change in the social-use icons 53 The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management 54 PES (2022) and Future1 predicted discipline-specific ecological conditions (EC = 52 Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 55 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 56 PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 57 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios 60 EWRs to maintain a C category at 1_Lephalala (PES 2022 flow scenario) 66

Table 7-6 EWRs to maintain a C category at 4_Mogalakwena1 (PES 2022 flow scenario)..... 69 Table 7-7 EWRs to maintain a B/C category at 4_Mogalakwena1 (Future1 flow scenario) 70 Table 7-8 EWRs to maintain a C category at 5_Mogalakwena (PES 2022 flow scenario)......71 Table 7-11 EWRs to maintain a high C category at 7_Sand (PES 2022 flow scenario)......74 Table 7-13 EWRs to maintain a C category at 8_Nzhelele (PES 2022 flow scenario)76 Table 7-15 EWRs to maintain a C/D category at 8_Nzhelele (Synthetic scenario 1)78 Table 7-19 EWRs to maintain a C category at 10_Latonyanda (PES 2022 flow scenario) 82 Table 7-20 EWRs to maintain a C category at 11_Mutshindudi (PES 2022 flow scenario) 83 Table 7-24 EWRs to maintain a C category at 13_Mutale1 (PES 2022)......87 Table 8-6: Summary of EWRs for a C category at SAND-A71K-R508B 107 Table 8-8: Summary of EWRs for a C category at LUVU-A91K-OUTPO...... 111 Table 8-11 PES and REC for invertebrates, fish and vegetation for the 5 LIMCOM study sites Table 8-12 Summary of EWRs for the 5 LIMCOM study sites 117 Table 8-13 Summary of EWRs for LEPH-A50H-SEEKO......118 Table 8-14 Summary of EWRs for MOGA-A36D-LIMPK......119 Table 8-15 Summary of EWRs for SAND-A71K-R508B......120 Table 8-16 Summary of EWRs for LUVU-A91K-OUTPO 121

Table 8-17 Summary of EWRs for the SHIN-B90H-POACH site12

1 INTRODUCTION

1.1 Background

The Department of Water and Sanitation (DWS), Chief Directorate: Water Ecosystems Management initiated a three-year study for the Determination of Water Resource Classes, Reserve and Resource Quality Objectives for Secondary Catchments (SC) A5-A9 within the Limpopo Water Management Area (WMA) and SC B9 in the Olifants WMA.

The suite of Resource Directed Measures tools being implemented in these catchments aims to promote sustainable utilisation of the water resources to meet the ecological, social and economic needs of the communities dependent on them.

1.2 Objectives of the study

The overall objective of the study is to classify and determine the Reserve and Resource Quality Objectives (RQOs) for all significant water resources in SCs A5-A9 in the Limpopo WMA and SC B9 in the Olifants WMA.

The Scope of Work as stipulated in the Terms of Reference calls for:

- Implementation of the Water Resources Classification System as required in Regulation 810 in Government Gazette 33541, by classifying all significant water resources in the Limpopo WMA (SCs A5-A9) and Olifants WMA (SC B9).
- Determination of the water quantity and quality components of the groundwater and surface water (rivers and wetlands) Reserve¹.
- Determination of the RQOs using the DWS 'Procedures to Determine and Implement Resource Quality Objectives' (DWAF 2011).

The determination of the water quantity and quality components of the Ecological Reserve comprises a series of steps including Eco-Categorisation, which is the process of determining the Present Ecological Status (PES) of the groundwater and surface water (rivers and wetlands), taking into consideration the Ecological Importance and Sensitivity (EIS) of the water resources to derive a Recommended Ecological Category (REC) for which the Ecological Water Requirements (EWR) are determined. The EWR² is needed to support different levels of ecological health (habitat and biota) in the rivers and wetlands (Adams *et al.* 2016). Before the final EWR can be set for the determined REC, the selected development scenarios must be assessed to determine what the risk of each scenario is on meeting the REC and its associated requirements. The most feasible scenario will be selected based on providing optimum sustainable water use, but without compromising the ecological infrastructure (health providing the goods and services). This value presented as the Ecological Category is taken through to the Water Resource Classification process. It is during this phase where closer attention is given to the social and economic requirements related to water use and the future management of the

¹ The Basic Human Needs are provided in the Main EWR report.

² The quality, quantity and timing of flow to support ecosystem function (Adams et al. 2016).

studied water resources. Stakeholders participate in this process by using the risks identified when evaluating the implication of existing and planned water-resource developments on the water available for the rivers and wetlands (ecological health) and the associated predicted impacts on the selected REC. **Table** 1-1 provides the generic descriptions of the ecological condition expressed by the Ecological Category. In the WRCS, one EWR and its associated ecological category will be chosen for a river reach. This becomes the Ecological Reserve.

ECOLOGICAL CATEGORY	GENERIC DESCRIPTION OF ECOLOGICAL CONDITIONS	SCORE (%)
А	<u>Unmodified/natural.</u> Close to natural or close to predevelopment conditions within the natural variability of the system drivers: hydrology, physico-chemical and geomorphology. The habitat template and biological components can be considered close to natural or to pre-development conditions. The resilience of the system has not been compromised.	>92-100
A/B	The system and its components are in a close to natural condition most of the time. Conditions may rarely and temporarily decrease below the upper boundary of a B category.	>88-≤92
В	Largely natural with few modifications. A small change in the attributes of natural habitats and biota may have taken place in terms of frequencies of occurrence and abundance. Ecosystem functions and resilience are essentially unchanged.	>82-≤88
B/C	Close to largely natural most of the time. Conditions may rarely and temporarily decrease below the upper boundary of a C category.	>78-≤82
С	<u>Moderately modified.</u> Loss and change of natural habitat and biota have occurred in terms of frequencies of occurrence and abundance. Basic ecosystem functions are still predominantly unchanged. The resilience of the system to recover from human impacts has not been lost and it is ability to recover to a moderately modified condition following disturbance has been maintained.	>62-≤78
C/D	The system is in a close to moderately modified condition most of the time. Conditions may rarely and temporarily decrease below the upper boundary of a D category.	>58-≤62
D	Largely modified. A large change or loss of natural habitat, biota and basic ecosystem functions have occurred. The resilience of the system to sustain this category has not been compromised and the ability to deliver Ecosystem Services has been maintained.	>42-≤58
D/E	The system is in a close to largely modified condition most of the time. Conditions may rarely and temporarily decrease below the upper boundary of an E category. The resilience of the system is often under severe stress and may be lost permanently if adverse impacts continue.	>38-≤42
Е	<u>Seriously modified.</u> The change in the natural habitat template, biota and basic ecosystem functions are extensive. Only resilient biota may survive, and it is highly likely that invasive and problem (pest) species may dominate. The resilience of the system is severely compromised as is the capacity to provide Ecosystem Services. However, geomorphological conditions are largely intact but extensive restoration may be required to improve the system's hydrology and physico-chemical conditions.	20-≤38
F	<u>Critically / Extremely modified.</u> Modifications have reached a critical level and the system has been modified completely with an almost complete change of the natural habitat template, biota, and basic ecosystem functions. Ecosystem Services have largely been lost This is likely to include severe catchment changes as well as hydrological, physico-chemical, and geomorphological changes. In the worst instances the basic ecosystem functions have been destroyed and the changes are irreversible. Restoration of the system to a synthetic but sustainable condition acceptable for human purposes and to limit downstream impacts is the only option.	<20

Table 1-1 Definitions of the ecological categories (Kleynhans 1996)

1.3 Study area

The study area encompasses the Limpopo WMA SC A5 – A9 and the Olifants WMA SC B9 (**Figure** 1-1). The area spans six river catchments: Lephalala, Mogalakwena, Sand, Nzhelele and Luvuvhu rivers in the Limpopo WMA and the Shingwedzi River in the Olifants WMA.

There are a number of important conservation areas (**Figure** 1-1) in the study area. The Shingwedzi and the Luvuvhu Rivers flow into the Kruger National Park. The lower Luvuvhu River flows through the Luvuvhu River Floodplain that is part of the Makuleke wetland complex, a Ramsar site along the

Limpopo River. There are a number of other nature reserves near the Kruger National Park: the Thengwe Nature Reserve and the Mphaphuli Protected Environment is situated between the Mutale and Luvuvhu Rivers; the Nwanedi Nature Reserve on the Nwanedi River and the Philip Herd Nature Reserve on the Nzhelele River. The Kolope River flows through the Mapungubwe National Park into the Limpopo River and the Wonderkop Nature Reserve is situated along the lower Mogalakwena River with the Doorndraai Nature Reserve in its upper catchment. The Lephalala River flows through the Lephalala Nature Reserve and there is another Ramsar site on the upper Nyl River, the Nylsvley Nature Reserve.

Fourteen EWR sites were selected on the main rivers flowing into the Limpopo River as follows and shown in **Figure 1-1**:

- Upper Lephalala River (site code 1_Lephalala)
- Rietfontein River (2_Rietfontein)
- Olifantspruit River (3_Olifantspruit)
- Upper Mogalakwena River (4_Mogalakwena1)
- Lower Mogalakwena River (5_Mogalakwena2)
- Kolope River (6_Kolope)
- Upper Sand River (7_Sand)
- Nzhelele River (8_Nzhelele)
- Nwanedi River (9_Nwanedi)
- Latonyanda River (10_Latonyanda)
- Mutshindudi River (11_Mutshindudi)
- Luvuvhu River (12_Luvuvhu)
- Upper Mutale River (13_Mutale1)
- Lower Mutale River (14_Mutale2).

The rivers in the Limpopo WMA are part of the transboundary Limpopo River Basin, which is shared by South Africa, Botswana, Zimbabwe and Mozambique. The mainstem Limpopo River is a transboundary watercourse that falls under the ambit of the Limpopo River Commission (LIMCOM) and its four member states that recently completed an EWR assessment (O'Brien et al. 2022). There are five LIMCOM EWR study sites (**Figure 1-1**) in South Africa that are all situated at the junction of these rivers in South Africa with the Limpopo River:

- The lower Lephalala River (site code LEPH-A50H-SEEKO).
- The lower Mogalakwena River (MOGA-A63D-LIMPK).
- The lower Sand River (SAND-A71K-R508B).
- The lower Luvuvhu River (LUVU-A91K-OUTPO).
- The Shingwedzi River (SHIN-B90H-POACH).

Figure 1-1 Map of the study area

1.4 The LIMCOM study

There are eight reports from the LIMCOM EWR study of the Limpopo River basin:

- E-Flows for the Limpopo River Basin Inception Report (Dickens and O'Brien 2020)
- E-Flows for the Limpopo River Basin Basin Description (Dickens et al. 2020a)
- E-Flows for the Limpopo River Basin From Vision to Management (Dickens et al. 2020b)
- E-Flows for the Limpopo River Basin Specialist Literature and Data Review (Dickens et al. 2022a)
- E-Flows for the Limpopo River Basin Drivers of Ecosystem Change (Dickens et al. 2022b)
- E-Flows for the Limpopo River Basin Ecological Responses to Change (O'Brien et al. 2022a)
- E-Flows for the Limpopo River Basin Environmental Flow Determination for the Limpopo Basin (O'Brien *et al.* 2022b)
- Risk of Altered Flows to the ecosystem services of the Limpopo Basin (O'Brien et al. 2022c).

The Limpopo River basin study is ongoing (as at February 2024) having just entered a new phase of work in three concurrent projects:

- To harmonise the EWRs for the Limpopo River basin, which will include making use of the EWRs that were determined for the rivers in South Africa as part of this project.
- To connect and interact with various stakeholders extensively.
- To define and analyse scenarios of possible future outcomes that are likely to influence freshwater ecosystems of the Limpopo River basin.

The EWRs from South Africa will become part of the project to harmonise EWRs for the Limpopo River basin and the outcomes of scenario analyses from this EWR assessment and the WRCS process will also be considered in the analysis of LIMCOM scenarios. Likewise, the existing EWRs from the first LIMCOM project (O'Brien *et al.* 2022b) will be used in the analysis of scenarios during the WRCS process, along with those determined in this project for the two Ramsar wetlands and the rivers in this report.

The Eco-Categorisation of the five LIMCOM EWR sites and the EWRs determined are summarised in **Section 8**. The executive summary that explains the methods used (O'Brien *et al.* 2022b) is provided in **Appendix A** with permission from USAID and IWMI.

1.5 Contents of the EWR Reports - Rivers

This report is the EWR Report – Rivers (Volume 3): Ecological Water Requirements and outlines step 4 & 5 (EWR quantification and scenario analysis) of the generic procedure for the determination of the Ecological Reserve (Figure 1-2).

It is one of three volumes dealing with river assessment in the study:

- EWR Report Rivers (Volume 1): Eco-Categorisation Report.
- EWR Report Rivers (Volume 2): Data Collection and Analysis Report.
- EWR Report Rivers (Volume 3): Ecological Water Requirements Report.

Figure 1-2: Generic steps to determine the Ecological Reserve

1.5.1 Eco-Categorisation Report (Volume 1)

In the Eco-Categorisation Report (Volume 1) there is a chapter for each river that describes the PES of each EWR site and compares it to the reference conditions expected, along with the sources of the information used to describe both the PES and the reference conditions. The causes and sources of the PES are given and trends in the PES considered. The overall ratings given for the EIS of the biota and habitats are given and notes provided for the reasoning behind the scores. The approach followed in Resource Directed Measures (RDM) is that if the EIS is high or very high, the ecological aim should be to improve the condition of the river. However, the causes related to the particular PES should also be considered to determine if improvement is realistic and attainable. This relates to whether the problems in the catchment can be addressed and mitigated. If the EIS evaluated is moderate or low, the ecological aim should be to maintain the river in its PES (Kleynhans and Louw 2007). The PES, EIS and REC are summarised at the end of each chapter for each EWR site.

1.5.2 Data Collection and Analysis Report (Volume 2)

In the **Data Collection and Analysis Report (Volume 2)** the details of the work done for each of the river components assessed are described:

- Section 2 Hydrology
 - Section 2.1 Describes the prevailing climate
 - o Section 2.2 Describes the water supply infrastructure
 - o Section 2.3 Describes the hydrological models used and extension of the time series'
 - Section 2.4 Describes the hydrological time series' that were generated for the scenarios
 - Section 2.5 Describes how an ecological category was derived for hydrological state
- Section 3 Hydraulics
 - Section 3.1 Describes the considerations given to selecting study sites
 - o Section 3.2 Describes the methods used to collect the hydraulic data
 - o Section 3.3 Describes the analysis and modelling of the hydraulic data
 - Section 3.4 Provides the outputs from the hydraulic modelling, the inputs for the DRIFT model, for each of the EWR sites.
- Section 4 Ecological Importance and Sensitivity. There is a sub-section for each EWR site that
 provides the ratings given to the vegetation, invertebrates and fish, and their habitat, that was
 used to derive the EIS for each site. A description of other factors considered to inform whether
 mitigation can practically be achieved and is warranted for each site is discussed. The other
 factors considered were: the current day flow, the location of the EWR site in relation to
 important conservation areas, Source Water Areas (SWA) and high priority wetlands.
- Sections 5 10 (for water quality, geomorphology, riparian vegetation, aquatic macroinvertebrates, fish and socio-economics respectively) describe the EWR sites from the perspective of each river component; summarise the information used to determine the PES; describe the characteristics of the variables, habitat types and biota selected to represent the river ecosystem in the DRIFT model, and the reasons why these were selected; describe the status and trends in the different variables from 1900 to present, and; provide Ecological Specifications, Thresholds of Potential Concern (TPCs) and recommendations for monitoring.

1.5.3 Ecological Water Requirements Report (Volume 3)

In this report:

- Section 2 summarises the steps and outcomes of the Eco-Categorisation for the 14 river sites; the PES (2022), EIS and decisions made for the REC.
- Section 3 is an overview of DRIFT-Limpopo, including the indicators chosen to represent each of the main disciplines studied.
- Section 4 describes the current and future water requirements and resource developments of the catchments.
- Section 5 describes the scenarios that were assessed.
- Section 6 summarises the ecosystem and social outcomes for the scenarios assessed.
- Section 7 summarises the EWRs generated from DRIFT-Limpopo.
- Section 8 summarises the outcomes of the LIMCOM study; PES, REC and EWRs.

1.6 EWR assessment method

The seven-step DRIFT process (**Figure** 1-3) (King *et al.* 2003; Joubert *et al*; **Section 3**) was used to organise three main kinds of eco-social information for the study rivers: (i) existing data; (ii) relevant data in the international scientific literature and project reports, and; (iii) expert opinion from the experienced expert team of river scientists (**Appendix B**). This knowledge base was then used to:

- select the main drivers and responders that represent the rivers
- assess the ecological condition of the rivers and describe this as the PES (2022)
- set up the database (or model) called DRIFT-Limpopo that will be used to run scenarios that will predict the outcomes of the future water resource developments
- predict the overall ecological condition of the river ecosystem under each scenario.

DRIFT-Limpopo was set up for 14 EWR sites (**Section 3**) and used to predict the outcome of the planned water resource developments on the PES of the EWR sites and whether this puts the sites at risk of not meeting their RECs. These scenarios were site specific for the reach that each EWR site represented; taken to be between any significant upstream and downstream incremental tributaries that would change the flow of water and sediment (see **Section 2.1**).

Figure 1-3 The seven-step DRIFT process

2 EWR SITES, ZONES AND ECOCATEGORISATION

2.1 EWR sites and zones

EWRs were determined at 14 EWR sites (Table 2-1), i.e., one or more on each of the study rivers.

No.	Node	River	EWR (Drift) Code	Quaternary Catchment	Latitude	Longitude
1	Riv11	Lephalala	1_Lephalala	A50B	23°59'11"S	28°24'20"E
2	Rvi1	Rietfontein	2_Rietfontein	A63C	22°34'06"S	28°37'31"E
3	Ri1	Olifantspruit	3_Olifantspruit	A61B	24°39'46"S	28°28'31"E
4	Ri5	Mogalakwena	4_Mogalakwena1	A62B	23°54'55"S	28°43'59"E
5	Ri14	Mogalakwena	5_Mogalakwena2	A63A	23°09'05"S	28°40'44"E
6	Riv32	Kolope	6_Kolope	A63E	22°13'50"S	29°14'56"E
7	Ri20	Sand	7_Sand	A71D	23°22'03"S	29°35'41"E
8	Ri27	Nzhelele	8_Nzhelele	A80G	22°28'52"S	30°15' 45"E
9	Ri28	Żwanedi	9_Nwanedi	A80J	22°30'50"S	30°26'52"E
10	Riii6	Latonyanda	10_Latonyanda	A91D	23°02'51"S	30°13'54"E
11	Ri30	Mutshindudi	11_Mutshindudi	A91G	22°53'18"S	30°35'18"E
12	Ri32	Luvuvhu	12_Luvuvhu	A91H	22°45'42"S	30°53'41"E
13	Ri33	Mutale	13_Mutale1	A92B	22°40'26"S	30°42'11"E
14	Ri34	Mutale	14_Mutale2	A92D	22°26'17"S	31°04'39"E

Table 2-1: Location and co-ordinates of the river EWR sites

Each EWR site represents an EWR zone (**Figure** 1-1), which extends up- and downstream to the confluence with the nearest tributary (DWS 2015). The EWR zones associated with each EWR site are:

- 1_Lephalala, downstream of the Rietbokvleispruit River to the Melk River.
- 2_Rietfontein, from source to the Limpopo River.
- 3_Olifantspruit, from source to the Nyl River.
- 4_Mogalakwena1, downstream of the Sterk River to the Mokemole River.
- 5_Mogalakwena2, downstream of the Seepabana River to the Leokeng River.
- 6_Kolope, downstream of Leeupan to the Maloutswa River.
- 7_Sand, downstream of the Dwars River to the Hout River.
- 8_Nzhelele, downstream of the Tshishiru River to the Limpopo River.
- 9_Nwanedi, downstream of Cross Dam to the Limpopo River.
- 10_Latonyanda, from source to the Luvuvhu River.
- 11_Mutshindudi, downstream of the Tshinane River to the Mbwedi River.
- 12_Luvuvhu, downstream of the Mutshindudi River to the Matsaringwe River.
- 13_Mutale1, downstream of Lake Fundudzi to the Mbodi River.
- 14_Mutale2, downstream of the Tshipise River to the Luvuvhu River.

2.2 Eco-Categorisation

2.2.1 Present Ecological Status (PES 2022)

The Present Ecological Status (PES 2022) for the disciplines representing the river ecosystem at each EWR site are given in **Table** 2-2, and the definitions of the categories are given in **Table** 1-1. Each discipline was given an equal weight in determining the PES.

Detail on the individual assessments is provided in:

- EWR Report Rivers (Volume 1): Eco-Categorisation
- EWR Report Rivers (Volume 2): Data Collection and Analysis.

Overall, the study rivers were in fair ecological condition. Thirteen of the 14 sites had an overall PES of a C, and the 14th site 2_Rietfontein was in a B/C category (**Table** 2-2).

	EWR site													
Discipline PES	1_Lephalala	2_Rietfontein	3_Olifantspruit	4_Mogalakwena1	5_Mogalakwena2	6_Kolope	7_Sand	8_Nzhelele	9_N Ňwanedi	10_Latonyanda	11_Mutshindudi	12_Luvuvhu	13_Mutale1	14_Mutale2
Hydrology	В	С	А	С	C/D	D	В	C/D	B/C	С	В	С	А	А
Geomorphology	С	С	С	С	D	D	С	C/D	D	С	С	D	С	С
Water quality	В	B/C	В	С	B/C	B/C	D	С	С	A/B	B/C	В	В	В
Vegetation	С	A/B	D	C/D	С	С	С	С	С	C/D	С	С	B/C	В
Invertebrates ³	B/C	В	B/C	С	С	B/C	С	С	С	B/C	С	B/C	С	С
Fish ⁴	D/E	A/B	С	С	A/B	D	С	В	B/C	B/C	С	С	С	С
PES (2022)	С	B/C	С	С	С	С	С	С	С	С	С	С	С	С

Table 2-2: PES (2022) of all river components and the EWR sites overall

The PES of most of the components were in a C category or higher (Table 2-2), except for:

- D/E for fish at 1_Lephalala
- D for riparian vegetation at 3_Olifantspruit
- C/D for riparian vegetation at 4_Mogalakwena
- D for geomorphology at 5_Mogalakwena
- D for geomorphology and fish at 6_Kolope

³ 'There were no invertebrate data collected at the non-perennial sites (2_Rietfontein, 6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be invertebrates in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.'

⁴ 'There were no fish data collected at the non-perennial sites (6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be fish in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.'

- D for water quality at 7_Sand
- C/D for geomorphology at 8_Nzhelele
- D for geomorphology at 9_Nwanedi
- C/D for riparian vegetation at 10_Latonyanda
- D for geomorphology at 12_Luvuvhu.

2.2.2 Ecological Importance and Sensitivity

The Ecological Importance of a river is an expression of its importance to the maintenance of biological diversity and ecological functioning on local and wider scales. Ecological Sensitivity (or fragility) refers to the system's ability to resist disturbance and its capability to recover from disturbance once it has occurred, called resilience (Kleynhans and Louw 2007).

The EIS was assessed using the DWS ratings for riparian, invertebrate and fish biota and instream habitats using the scoring system shown in **Table** 2-3. Detail on the EIS assessments is given in **EWR Report – Rivers (Volume 2): Data Collection and Analysis.**

Table 2-3: Determinants rated to determine EIS

Ecological Importance and Sensitivity Determinants (Kleynhans and Louw 2007)
BIOTA (RIPARIAN & INSTREAM)
Rare & endangered (range: 4=very high - 0 = none)
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)
Species/taxon richness (range: 4=very high - 1=low/marginal)
RIPARIAN & INSTREAM HABITATS
Diversity of types (4=Very high - 1=marginal/low)
Refugia (4=Very high - 1=marginal/low)
Sensitivity to flow changes (4=Very high - 1=marginal/low)
Sensitivity to flow related water quality changes (4=Very high - 1=marginal/low)
Migration route/corridor (instream & riparian, range: 4=very high - 0 = none)
Importance of conservation & natural areas (range, 4=very high - 0=very low)

The EIS rating per discipline at each site and for the EWR site overall is given in Table 2-4.

Table 2-4: EIS rating for each biological discipline and overall for the EWR site (H = High, M = Moderate; L = Low)

	EWR site													
Discipline EIS	1_Lephalala	2_Rietfontein	3_Olifantspruit	4_Mogalakwena1	5_Mogalakwena2	ŝ_Kolope	7_Sand	8_Nzhelele	9_N Ňwanedi	10_Latonyanda	11_Mutshindudi	12_Luvuvhu	13_Mutale1	14_Mutale2
Vegetation	М	L	L	L	М	L	L	М	L	L	М	L	Н	М
Invertebrates	М		М	м	М			н	М	М	Н	М	М	н
Fish	Н	L	Н	Н	Н	М	М	н	М	Н	Н	Н	Н	н
OVERALL EIS RATING (MEDIAN)	М	М	М	м	М	М	М	м	м	М	М	М	М	М

Once the scores are assessed, further consideration is given to other factors that help to inform whether mitigation can be practically achieved and is warranted. The other factors considered were:

- The current day flow (Mean Annual Runoff, MAR) as a percentage of the naturalised (reference) MAR (**Table** 2-5).
- The location of the EWR site in relation to (Figure 1-1):
 - o Important conservation areas, nature reserves and National Parks
 - Strategic Water Source Areas (SWSA)
 - Groundwater Source Areas (GWSA)
 - High Priority wetlands and Ramsar sites in particular.

Metrics	1_Lephalala	2_Rietfontein	3_Olifantspruit	4_Mogalakwena	5_Mogalakwena	6_Kolope	7_Sand	8_Nzhelele	9_ Ńwanedi	10_Latonyanda	11_Mutshindudi	12_Luvuvhu	13_Mutale	14_Mutale
Naturalised (MCM)	67.6	0.2	8.1	73.4	193.3	2.1	27.4	99.7	33.5	64.3	127.9	398.5	149.7	154.9
Current (MCM)	56.2	0.1	7.6	53.9	114.3	1.1	23.5	59.6	26.6	47.6	105.5	247.8	138.6	143.6
%nMAR	83	76	94	74	59	51	86	60	80	74	82	62	93	93
Flow Category	В	С	А	С	C/D	D	В	C/D	B/C	С	В	С	А	A

Table 2-5: Hydrological metrics at EWR sites

2.2.3 Recommended Ecological Category

The approach followed in Resource Directed Measures studies is if the EIS is high or very high, the ecological aim should be to improve the condition of the river. However, the causes related to the particular PES should also be considered to determine if improvement is realistic and attainable. This relates to whether the problems in the catchment can be addressed and mitigated. If the EIS evaluated is moderate or low, the ecological aim should be to maintain the river in its PES (Kleynhans and Louw 2007).

Within the Ecological Reserve context, Ecological Categories A to D can be recommended as future states (REC), depending on the EIS and PES. Ecological Categories E and F are regarded as ecologically unacceptable, and remediation is needed (Kleynhans and Louw 2007). The REC put forward for each EWR site are given in **Table** 2-6.

	EWR site													
Discipline	1_Lephalala	2_Rietfontein	3_Olifantspruit	4_Mogalakwena1	5_Mogalakwena2	6_Kolope	7_Sand	8_Nzhelele	9_Ńwane d i	10_Latonyanda	11_Mutshindudi	12_Luvuvhu	13_Mutale1	14_Mutale2
PES (2022)	С	B/C	С	С	С	С	С	С	С	С	С	С	С	С
EIS	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod	Mod
REC	B/C	B/C	B/C	С	С	B/C	С	С	С	С	С	B/C	С	С

Table 2-6: PES, EIS and REC for EWR sites

The EIS of all the sites was MODERATE but despite this, taking into account the other site-specific factors discussed, RECs of one-half category higher are recommended at four of the sites along with suggestions to better manage the non-flow related causes of the PES as follows:

- 1_Lephalala: PES = C, aim for a REC of a B/C category by clearing the exotic plants and re-stocking indigenous fish.
- 2_Rietfontein: maintain the PES = REC = a B/C category.
- 3_Olifantspruit: PES = C, aim for a REC of a B/C category by clearing exotic plants and curtail further future water use to support inflows into the Nyl River for the Nyl River floodplain.
- 4_Mogalakwena1: maintain the PES = REC = a C category.
- 5_Mogalakwena2: maintain the PES = REC = a C category.
- 6_Kolope: PES = C, aim for a REC of a B/C category by continuing the efforts to curb bank instability (gabion dams) and monitor the re-establishment of the riparian vegetation.
- 7_Sand: maintain the PES = REC = a C category.
- 8_Nzhelele: maintain the PES = REC = a C category.
- 9_Nwanedi: maintain the PES = REC = a C category.
- 10_Latonyanda: maintain the PES = REC = a C category.
- 11_Mutshindudi: maintain the PES = REC = a C category, which will require removing the exotic plants and in particular *Mimosa pigra* that has the potential to travel downstream and grow on the Luvuvhu River Floodplain.
- 12_Luvuvhu: PES = C, aim for a REC of a B/C category by better managing nutrients in WWTW, sand mining, and clearing the exotic plants.
- 13_Mutale1: maintain the PES = REC = a C category.
- 14_Mutale2: maintain the PES = REC = a C category.

3 OVERVIEW OF DRIFT-LIMPOPO

DRIFT-Limpopo is a model and database of eco-social information and knowledge used to predict potential changes to the study rivers because of human pressures, such as amongst others water-resource developments, plant harvesting, mining and agricultural practices.

3.1 Modules

DRIFT-Limpopo comprises three modules (Figure 3-1): Setup, Knowledge Capture, and Analysis.

These three modules, with all their components, are presented within the cream block at the bottom of **Figure** 3-1. The elements that provide input to and outputs from these are indicated in the area above the cream block.

Figure 3-1: Arrangement of modules in DRIFT-Limpopo (light-brown shading) and inputs/ outputs from/ to external models/ data sources

The first two modules deal with the setup, population and calibration of the flow-eco-social relationships that are used to predict the ecosystem response to potential development /management actions. The third module is used to generate results once the first two modules have been configured, and to export the output data detailing the predictions for the configurations under consideration to MS Excel for post-processing and reporting.

3.2 Representative reaches and sites

DRIFT-Limpopo focuses on the EWR sites/zones described in **Section 2**. The designated EWR sites in each zone were the focus for all data collection/collation, hydrological/hydraulic modelling, selection of drivers (Hydrology, hydraulics, habitat and water quality) and responders (riparian vegetation, aquatic macroinvertebrates and fish), and reporting.

3.3 Disciplines

The hydrology for the study rivers is described in **Section 5.1**, and the hydrological and hydraulic modelling are described in the **EWR Report – Rivers (Volume 2): Data Collection and Analysis.**

In DRIFT-Limpopo, the river ecosystems are represented by six disciplines:

- Geomorphology
- Water quality
- Vegetation
- Macroinvertebrates
- Fish
- Social use.

The supporting information gathered and data collected for the disciplines and the indicators selected to represent them are provided in the EWR Report – Rivers (Volume 2): Data Collection and Analysis.

3.4 Hydro-biological flow seasons

DRIFT uses four hydro-biological flow seasons:

- **Dry Season** (Dry). Flows are much less than the annual average and there is relatively little *natural* flow variability from day to day.
- Transition Season 1 (T1). A time of transition between the end of the Dry Season and the start
 of the Flood Season. Flows increase but not necessarily rapidly. A number of spates or
 'freshets' might typically signify a number of false starts to the Flood Season, with flows
 receding again after each one.
- **Flood/Wet Season** (Flood). This is initially characterized by a number of periods of accelerated rates of increasing flow until the annual peak discharge is reached. There may be a number of pulses in this process but overall there is a clear **single flood-pulse hydrograph**.
- **Transition Season 2** (T2). A second transition season between the end of the Flood Season and the start of the Dry Season, during which time the rate of flow recession remains higher than in the Dry Season. In some years there may be late but relatively minor spate events etc. (freshets).

3.5 Indicators and links

The discipline-specific representatives of the river ecosystems and the links between driving and responding indicators derived by the river EWR team are described in the **EWR Report – Rivers** (Volume 2): Data Collection and Analysis. The hydrological and hydraulic data for the drivers were generated outside of the DRIFT-Limpopo (Section 3.5.1). Others are internal eco-social indicators (Section 3.5.2) whose predicted changes are provided through response curves in DRIFT-Limpopo.

3.5.1 Hydrology input data and indicators

DRIFT-Limpopo used modelled hydrology as the main (driving) input data.

All the time-series use the same period: 1925-2021. Once imported into DRIFT-Limpopo, the timeseries' were summarized into **ecologically relevant** 'driver' indicators, reported as annual values or as values for one or more of four hydro-biological flow seasons (Section 3.4; Table 3-1):

- Dry Season (Dry).
- Transition Season 1 (T1)
- Flood/Wet Season (Flood)
- Transition Season 2 (T2).

The indicators created using these time-series' and the seasons for which they were calculated are provided in **Table** 3-1.

The first sets of data produced for each EWR zone were the PES (2022) and naturalised scenarios against which the DRIFT-Limpopo was calibrated:

- PES (2022), which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at 2022 levels.
- Reference, which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at C 1900 levels.

Thereafter, simulated time-series over the same period were produced for the scenarios (**Section 4**), and relative change linked to the scenarios is reported relative to PES (2022).

3.5.2 Internal eco-social indicators

Eco-social indicators are a set of indicators that represent the riverine ecosystem and resources used by humans that are reliant on the ecosystem and human pressures on those resources. They are deemed to be sensitive to a change in the driver indicators in **Table** 3-1 by changing in one of the following ways:

- abundance/size, e.g., fish
- extent (area), e.g., cover of riparian tree community on upper dry bank
- concentration, e.g., sediments and nutrients.

Discipline	Season	Indicator	Units
		Mean annual runoff	m³/s
	Annual	Zero flow days per year	
	Annual	Days continuous depth > 5 cm	days
		Days continuous depth > 10 cm	
		Onset	calendar week
	Dry Season	Duration	days
	Dry Season	Minimum 5-day discharge	m³/s
ology		Average daily volume	$m^3 \times 10^6$
	Transition Season 1	Average daily volume	
lin		Duration	days
ł		Onset	hydrological week
<u> </u>		Duration	days
		Maximum 5-day discharge	
	Flood/Wet Season	m³/s	
		Maximum 5-day baseflow discharge	
		Volume	m ³ x 10 ⁶
	Transition Season 2	Average daily volume	
		Duration	days
		Average shear stress	N/m ²
		Minimum (of average) depth	m
		Maximum (of average) depth	
		Minimum (of average) velocity	
		Average (of maximum) velocity	m/s
River hydraul	ics (for all seasons	Maximum (of average) velocity	
above, at one	or two selected	Average fast very shallow flow	
cross-section	s at each EWR site)	Average fast shallow flow	
		Average fast deep flow	
		Average slow deep flow	% cross-section
		Average slow very shallow flow	
		Average slow shallow flow	
		Average slow deep flow	

Table 3-1: DRIFT-Limpopo hydrology and hydraulic input data and indicators

Indicator selection in each discipline took due consideration of the relevance for the other disciplines. For instance, the geomorphological indicator 'pool depth' was selected because pools are an important habitat for fish, and are subject to scour or infilling with sand or silt. The indicators, the reasons for their selection and the driving links are discussed in greater detail in the **EWR Report – Rivers (Volume 2): Data Collection and Analysis**.

The value of an indicator may change with scenarios, and in doing so, drive other indicators to change. For instance, responders to one driver (e.g., pool depth declining as sediment loads increase) can become drivers themselves (e.g., change in pool depth affects some fish species), thus driving further change (e.g., reduction in fish catch, this has a knock-on effect for birds for instance as well). The simplified linkages between disciplines are shown in **Figure 3**-2 thus mask the suite of driver-response links used in the analyses (see **EWR Report – Rivers (Volume 2): Data Collection and Analysis**). Each line in **Figure 3**-2 represents a response curve drawn by the specialists and housed in the DRIFT-Limpopo; along with a motivation for its shape. For instance, at EWR site 10_Latonyanda there were 234 response curves. There were similar numbers of response curves for the other EWR sites.

The DRIFT-Limpopo database thus forms a knowledge base set up by the EWR specialists using existing knowledge and understanding about the functioning of the aquatic ecosystems. In this study the database was interrogated to analyse a suite of EWR scenarios, but it is also available to test other scenarios as part of future studies or planning initiatives.

The full list of drivers and responders used for each discipline is provided in **Table** 3-2. These were selected because of their importance in the functioning of the ecosystem and also, in the case of the fauna, because they represent wider groups of species and/or species of particular conservation concern. A description of each indicator in **Table** 3-2, the reasons for its selection, its links and explanations/supporting references for the response curves for the river are presented in the **EWR Report – Rivers (Volume 2): Data Collection and Analysis**.

Figure 3-2: Discipline-level assessment framework for EWR sites in DRIFT-Limpopo. Each line is represented by a response curve

Table 3-2: DRIFT-Limpopo eco-social indicators

	EWR site													
Indicators	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Discipline: Water quality														
Water clarity														
Electrical conductivity														
Water temperature														
Total inorganic nitrogen (TIN)														
Orthophosphate (PO ₄ -P)														
Dissolved oxygen														
Biocides														
Discipline: Geomorphology														
Clay silt FPOM supply														
Sand gravel supply														1
Bed erosion														1
Bank erosion														1
Bed sediment size														1
Embeddedness														1
Pool depth														
Backwaters and secondary channels														
Inset bench and sand bars														
Inundated sandy habitat														
Inundated cobble habitat														
Riffles														
Flood benches														
Discipline: Vegetation														
Algal biofilms														
Filamentous algae														
Aquatic vegetation														
Marginal zone graminoids (grass like plants)														
Marginal zone broadleaf plants														
Marginal zone woody vegetation														
Flood bench graminoids														
Flood bench woody vegetation														
Macrochannel bank riparian trees														
Macrochannel bank terrestrial woody plants														
Discipline: Aquatic macroinvertebrates														
Atyidae (shrimps)														
Perlidae (stone files)														ĺ
Heptageniidae (flat-head mayflies)														ĺ
Coenograionidae (sprites and blues)														ĺ
Gomphidae (club-tailed dragonflies)														ĺ
Hydropsychidae (caddisflies)														
Simulidae (blackflies)														
Caenidae (cainflies)														
Composite ⁵ : Invertebrate food for fish														
Discipline: Fish														
Rocky riffle fish														
Quiet vegetated water fish														
Migratory fish														

⁵ The sum of the invertebrate responders when grouped together, to create a driver for fish food.

L. P. Martan	EWR site													
Indicators	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Tolerant species														
Fish health														
Species diversity														
Composite: fish abundance ⁶														
Discipline: Social														
Recreation, cultural value														
Nature tourism value														
Fisheries value														
Plant resource value														
Household water benefits														
Subsistence livestock grazing														
Carbon retention value														
Water treatment costs														
Health risk														
Discipline: Pressures										-				
Pressures affecting sediment supply														
Pressures affecting sand gravel and cobble														
Pressures affecting water quality														

3.6 **Response curves**

Response curves are housed in DRIFT-Limpopo and depict the relationship between an eco-social indicator and a driving variable (e.g., discharge).

A response curve for the relationship between erosion and the maximum discharge in the wet season is shown in **Figure** 3-3.

Wet m	ax 5d Q [F se	eason]					2 20, 1 11 11	
Desc	m3/s	Y1	Y2			1300		s/s
Min	0.000	-1.500				250	5 O AD MAR A M. MARIA AD A NO AN AO	Ë
Min Base	0.796	-0.800				200		
	3.547	-0.400		1		150		
Median	6.298	0.000				100	1930 1940 1950 1960 1970 1980 1990 2000 2010 2020	
	39.039	1.000		1		100	The higher the maximum flows in the river, the greater the extent of inundation of the	^
Max Base	71.780	2.000				50	the backwaters and secondary channels, increasing the volume and density of these features,	
Max	82.547	3.000		0	50	0	but the features can fill in during lower flows (Milan et al., 2018a, 2018b, 2020).	~

Figure 3-3: A snap-shot from DRIFT-Limpopo showing one of the geomorphology response curves and explanations for backwaters and secondary channels at 1_Lephalala

In **Figure** 3-3, the red line in the first graph is the mean response, and the light blue and darker blue lines represent the uncertainty (upper and lower limits). In the second graph (time-series), the solid pink series shows the annual values for the linked indicator, e.g., maximum discharge in the wet season. The blue lines in these time-series graphs show the modelled annual response of backwaters and secondary channels to the PES (2022) variations for the linked indicator only, i.e., excluding any responses to other drivers. These variations are around the mean PES (2022) values of 100% for the indicator.

⁶ The sum of the abundance of rocky riffle, quiet vegetated water, migratory and tolerant fish.

The units on the x-axis depend on the driving indicator under consideration. For instance, for the maximum discharge in the wet season (**Figure** 3-3), these are in m³/s. The y-axis may refer to abundance as in **Figure** 3-3, but also to other measures such as concentration or area, depending on the indicator. Response curves were constructed using severity ratings (**Table** 3-3).

Table	3-3:	DRIFT	severity	ratings	and	their	associated	l gains	and	losses	– a	negative	score
		mean	s a loss i	n abund	ance	relati	ve to PES ((2022) , a	a pos	itive m	eans	a gain	

Severity rating	Severity	% abundance change
5	Critically severe	501 % gain to ∞ up to pest proportions
4	Severe	251-500 % gain
3	Moderate	68-250 % gain
2	Low	26-67 % gain
1	Negligible	1-25 % gain
0	None	no change
-1	Negligible	80-100 % retained
-2	Low	60-79 % retained
-3	Moderate	40-59 % retained
-4	Severe	20-39 % retained
-5	Critically severe	0-19 % retained includes local extinction

Each response curve is accompanied by an explanation of its importance and the relationship it depicts. For the example in **Figure** 3-3, the explanation for the backwaters and secondary channels response curve reads as follows: "*The higher the maximum flows in the river, the greater the extent of inundation of the backwaters. Lower peak flows will limit the extent of seasonal inundation. Flood flows also scour the backwaters and secondary channels, increasing the volume and density of these features, but the features can fill in during lower flows (<i>Milan et al. 2018a, 2018b, 2020*)".

The response curves do not address any of the scenarios directly. The curves are drawn for a range of possible changes in each linked indicator, regardless of what is expected to occur in any of the scenarios. For this reason, some of the explanations refer to conditions that are unlikely to occur under any of the water-resource development scenarios but are needed for completion of the response curves. In addition, each response curve assumes that all other driving indicators are at PES (2022).

The response curves are used to evaluate scenarios by taking the value of the flow indicator for any one scenario and reading off the resultant values for the eco-social indicators from their respective response curves. For each year of the hydrological record, and for each eco-social indicator, the severity rating corresponding to the value of a driving indicator is read off its Response Curve and converted to a percentage change. The severity ratings for each driving indicator are then combined to produce an overall change in abundance for each season, which provide an indication of how abundance, area or concentration of an indicator is expected to change under the given flow conditions over time, relative to the changes that would have been expected under PES (2022) conditions.

3.7 Major assumptions and limitations

Predicting the effect of changes in flow, sediment and human pressures on rivers is difficult because the actual trajectory and magnitude of the change is dependent on so many other variables, such as climate, politics, road networks, economics and regulations. Thus, several assumptions and limitations apply to DRIFT-Limpopo:

- The modelled time-series of flow and other drivers of ecosystem condition approximate the actual conditions in the river over the period of record, and for the development levels selected. Should this not be the case, then the PES (2022) for the scenarios would be different to that used and so the scenario predictions, which are relative to this PES (2022), could also change. For instance, if the PES (2022) hydrological time-series was changed, then the scenario predictions would change.
- Capturing the complexity of the system is confounded by the paucity of data. This is a universal problem, as by their nature human interactions with ecosystems are complex. Complete certainty of the present and possible future characteristics of the ecosystems is not realistic. However, it is essential to proceed cautiously, and aid decision-making using best available information. The alternative is that development and management decisions are made without consideration of the consequences for the supporting ecosystems, eventually making management of sustainability impossible. Data paucity was addressed in DRIFT-Limpopo by accessing as much available knowledge as possible within the constraints of the ToR using general scientific understanding; international scientific literature; local wisdom and insights from people who have worked in the rivers of the region. This information was captured in a structured process that is transparent, with the inputs and outputs checked at every step. The response curves (and the reasoning used to construct them) are available for scrutiny within DRIFT-Limpopo. They can (and should be) updated as new information becomes available and new insights gained.

These inherent uncertainties mean that attention should be directed toward trends in the sequence of scenarios and the position of scenarios relative to each other, rather than towards absolute values.

4 CURRENT AND FUTURE WATER REQUIREMENTS AND RESOURCE DEVELOPMENTS OF THE CATCHMENTS

4.1 Overview

This chapter provides an overview of the current and future water requirements and associated water resource development in each secondary catchment within the study area, which informed the development of the Future Scenarios.

The date for assessing the current water requirements was set at 2020. The extent of water abstraction to meet the current water requirements and the return flows from the wastewater treatment works were based on the Green Drop assessments undertaken in 2021/22.

4.2 Lephalala River Catchment

4.2.1 Current water requirements and existing water resource infrastructure

The existing water resources infrastructure in the Lephalala River catchment is shown in **Figure** 4-1 and **Table** 4-1. As illustrated in the figure and table:

- The EWR site is located in the upper Lephalala catchment. The significant water use in the catchment is irrigation agriculture from the farm dams in the tributaries of the Lephalala River. These farm dams are situated downstream of the EWR and will not impact the immediate reach downstream of the EWR.
- Further downstream are rural communities that abstract water from run-of-river and groundwater for consumptive purposes.
- The following can be noted from **Table** 4-1:
 - The most significant water requirement in the Lephalala catchment is irrigation agriculture. Since this is not supplied from regulated sources, the assurance of supply for agriculture is very low. Some, if not most, of the agriculture is considered opportunistic irrigation.
 - Livestock farming is the second largest water requirement, with domestic water requirements dependent on run-of-river abstraction.

Figure 4-1: Lephalala River Catchment – Existing Water Resources

Table 4-1: Current water requirements and sources of supply in the Lephalala, Mogalakwena and Sand River catchments

	EW/D	Current Water User - 2020		C Al River System	Current Abstraction	Quaternary	Water Transf	iers		
Catchment	Site	Username	Source	River System	(million m³/a)	Catchment	From resource	which	million m³/a	Water Use Point
		Modimole								
Catchment Lephalala Mogalakwena		Irrigation Agriculture	Visgacth Dam / Farm Dams	Palala River	42.91	A50 E				
Lephalala	Riv 11	Domestic	Groundwater Aquifer	Lephalala River	1.36	A50G				
		Livestock	Lephalala	Lephalala River	2.39	A50 A & B				
		Domestic	Run-of-River abstraction	Lephalala River	1.46	A50E				
		Sub-Total Water Abstractions (m	nillion m³/a)		48.12				-	
			Donkerpoort Dam	Little Nyl	2.19	A61A				
	Ri 1	Modimole Town	Groundwater Aquifer	Groundwater	0.44	A61A	Roodeplaat Dam		1.83	A61A
		Irrigation	Groundwater Aquifer	Groundwater		A61A				
		Sub-Total Water Abstractions (m		2.63				1.83		
		Maakgaphang Town	Welgevonden Dam	Sterk River	1.86	A61H				
			Nyl River Wellfield	Groundwater						
		Mokopape Town & surrounds	Doorndraai Dam	Sterk River	6.21	A61F				
Mogalakwena	Ri 5	Legends Golf Course	Doorndraai Dam	Sterk River	0.27	A61J				
Woyalakwella	_	Irrigation agriculture	Doorndraai Dam	Sterk River	4.26	A61J				
		Mines	Doorndraai Dam	Sterk River	1.74	A61D				
		Mines - Mogalakwena Platinum Mine	Return Flows	Sand River catchment	8.90	A61G				
		Sub-Total Water Abstractions (m	nillion m³/a)		14.34				-	
		Irrigation agriculture - Glen Alpine Dam	Glen Alpine Dam	Mogalakwena	7.30	A63A				
		Water Losses	Glen Alpine Dam	Mogalakwena	5.48	A63 A				
	Ri 14	Irrigation agriculture	Groundwater	Groundwater	43.20	A63B				
		Domestic	Glen Alpine Dam	Mogalakwena	3.34	A63B				
		Livestock	Mogalakwena	Mogalakwena	3.50					
		Sub-Total Water Abstractions (million m ³ /a)			59.32	-	-		-	

EWR Report – Rivers (Volume 3): Ecological Water Requirements

Catchment	FWR	Current Water User - 2020		River System	Current Abstraction	Quaternary	Water Transfers		
Catchment	Site	Username	Source	River System	(million m³/a)	Catchment	From which resource	million m³/a	Water Use Point
		Polokwane - Domestic &	Seshego Dam	Bloed River	3.66	A71A			
		Industrial	Chuenespoort Dam				Dap Naude Dam	6.53	A71A
		Moletjie - Domestic & Industrial	Mashashane Dam	Hout River	0.37	A71E			
			Houtrivier Dam	Hout River	0.47	A71E	Flag Boshielo Dam	9.42	A71A
			Molepo Dam		0.76		Ebenezer Dam	16.20	A71A
		Silicon Smelters Mine			15.10	A71A			
Sand River	Ri20	Irrigation agriculture	Sand River Aquifer	Groundwater	126.80	A71G / A72A			
	Makhado Town					Albasini Dam / Nandoni Dam Transfer Scheme	3.58	A71 H	
		Musina Town	Limpopo River - aquifer	Limpopo	6.57	A71K			
		Sinthumule / Kutama RWS	Groundwater Aquifer	Sand River catchment	0.94				
		Sub-Total Water Abstractions (m		154.67	-	-	35.73	-	

4.2.2 Return flow analysis

The wastewater treatment in the Lephalala catchment (see **Table** 4-2) is an oxidation pond that evaporates the final water into the atmosphere. This does not contribute to the flows downstream of the EWR site.

Return flow from irrigation agriculture is located downstream of the EWR site and will not contribute to the flows at the EWR site.

4.2.3 Water Requirements Forecast and Proposed Development Options

With the growth in population and economic activities in the Lephalala catchment, it is envisaged that the domestic and non-domestic water requirements will increase over the planning period to 2050 (**Table** 4-3). The development of groundwater and increased run-of-river abstraction will meet future water requirements.

No significant proposed developments are envisaged in the catchment. Irrigation agriculture is not likely to grow and no water resource infrastructure is planned for this purpose.

With the envisaged growth in domestic water consumption, the return flows from the wastewater treatment works were considered in the Future scenarios.

4.3 Mogalakwena River Catchment

4.3.1 Current water requirements and existing water resource infrastructure

Water users in the Mogalakwena catchment include domestic users, industries, irrigation agriculture and mining (see **Table** 4-1).

Dams in the catchment include the Doorndraai Dam in the Sterk River and the Glen Alpine Dam in the lower Mogalakwena River. These are multipurpose dams. Several farm dams supply irrigation agriculture. The local water resources cannot meet the current water requirements and there is a transfer scheme from Roodeplaat Dam to supplement the water resources of Modimolle and the surrounding communities. There is also a transfer of return flows from Polokwane WwTWs to supply water to the platinum mines in the Mogalakwena catchment, as illustrated in **Figure** 4-2.

Water abstraction will impact the three EWR sites in the Mogalakwena catchment for use. The hydrological modelling considered the raw water abstractions upstream of each EWR site, as illustrated in **Table** 4-1 above.

Table 4-2: Return Flow Analysis in the Lephalala, Mogalakwena and Sand River catchments

		Current Water User - 2020			Return Flow			
Catchment	EWR Site	User Name	Source	River System	Wastewater Treatment Plant	Design Capacity (MI/d)	Current Utilisation	Current Returr Flow (million m³/a)
		Modimole						
		Irrigation Agriculture	User - 2020 River System Inture Visgath Dam / Farm Dams Palala River Inture Visgath Dam / Farm Dams Palala River Inture Groundwater Aquifer Lephalala River Inture Lephalala Lephalala River Inture Run-of-River abstraction Lephalala River Inture Run-of-River abstraction Lephalala River Inture Donkerpoort Dam Little Nyl Groundwater Aquifer Groundwater Dorndraai Dam Sterk River Nyl River Wellfield Groundwater Doorndraai Dam Sterk River Iture Doorndraai Dam Sterk River Iture Doorndraai Dam Sterk River Iture Glen Alpine Dam Mogalakwena Inture - Glen Glen Alpine Dam Mogalakwena Mogalakwena Mogalakwena Mogalakwena	Palala River				
		Domestic	Groundwater Aquifer	Lephalala River				
		Livestock	Lephalala	Lephalala River	Zongesien WWTW	0.5	120%	0.22
		Domestic	Run-of-River abstraction	Lephalala River				
		Sub-Total Water Abstractions (m	illion m³/a)			0.5		0.22
		Modimole Town	Donkerpoort Dam	River System Return Flow Wastewater Treatment Plant Design Capacity (M/d) Current Utilisation / Farm Palala River	2.04			
	Ri 1		Groundwater Aquifer	Groundwater				
		Irrigation	Groundwater Aquifer	Groundwater				
		Sub-Total Water Abstractions (m	illion m³/a)			6.5		2.04
		Mookaophona Town	Welgevonden Dam	Sterk River	Mokgophong WWTW	2	0%	
			Nyl River Wellfield	Groundwater				
		Mokopane Town & surrounds	Doorndraai Dam	Sterk River				
		monopario romi a caricanac						
	Ri 5	Legends Golf Course	Doorndraai Dam	Sterk River				
Mogalakwena		Irrigation agriculture	Doorndraai Dam	Sterk River				
		Mines	Doorndraai Dam	Sterk River				
		Mines - Mogalakwena Platinum Mine	Return Flows	Sand River catchment				
		Sub-Total Water Abstractions (m	illion m³/a)			2		-
		Irrigation agriculture - Glen Alpine Dam	Glen Alpine Dam	Mogalakwena	Mokopane WWTW	9	89%	2.92
	Ri 14	Water Losses	Glen Alpine Dam	Mogalakwena	Rebone WWTW	0.5		0.35
		Irrigation agriculture	Groundwater	Groundwater	Mosodi WWTW	1.5		1.32
		Domestic	Glen Alpine Dam	Mogalakwena				
		Livestock	Mogalakwena	Mogalakwena				4.50
		Sub-Total Water Abstractions (m	illion m³/a)			11.00		4.59
		Polokwane - Domestic & Industrial	Seshego Dam	Bloed River	Polokwane WWTW	32	97%	11.33
			Chuenespoort Dam					
		Malatiia Damaatia 8 Industrial	Mashashane Dam	Hout River				
		Moletjie - Domestic & Industrial	Houtrivier Dam	Hout River	Seshego WWTW	7.8	71%	2.02
			Molepo Dam					
Sand River	Ri20	Silicon Smelters Mine						
		Irrigation agriculture	Sand River Aquifer	Groundwater	Makhado WWTW	13.91		5.08
		Makhado Town			Rietvlei WWTW	5	80%	1.46
		Musina Town	Limpopo River - aquifer	Limpopo	Musina WWTW	2		0.69
		Sinthumule / Kutama RWS	Groundwater Aquifer	Sand River catchment				
		Sub-Total Water Abstractions (m	illion m ³ /a)			60.71		20.58

		Notes
n	Resource Discharged into	
	None Worte	
	Stabilisation Pond	
		Although the abstraction is upstream, it affects the tributary contribution downstream of the EWR site
		No return flow - irrigation or effluent
	Mogalakwena River	
	Mogalakwena River	
	Mogalakwena River	
		Return Flows recharging the groundwater
		Return Flows recharging the groundwater
		The plant has been restarted
		I ne plant has been restarted Most irrigation is downstream of
	Listhovhu River	Polokwane Town - Mainly in the tributaries of Hout & Brak
	Listhovhu River	
	Sand River	
	-	

Table 4-3: Water Requirement Projections for the Lephalala, Mogalakwena and Sand River catchments

Catchmont	FWR Site	Current Water User - 2020		River System	Current Abstraction	Quaternary Catchmont	Water Requirements Projections						
Gatonment	EWR Sile	User Name	Source		(million m³/a)	Qualernary Calcriment	2025	2035	2040	2045	2050		
		Modimole											
Catchment Upper Lephalala Mogalakwena		Irrigation Agriculture	VisgacthDam / Farm Dams	Palala River	42.91	A50 E	42.91	42.91	42.91	42.91	42.91		
		Domestic	Groundwater Aquifer	Lephalala River	1.36	A50G	1.48	1.74	1.89	2.05	2.22		
Upper Lephalala	Riv 11	Livestock	Lephalala	Lephalala River	2.39	A50 A & B	2.39	2.39	2.39	2.39	2.39		
Catchment EWI Upper Lephalala Riv Ri 1 Ri 1 Mogalakwena Ri 5 Mogalakwena Ri 1 Sand River Ri20		Domestic	Run-of-River abstraction	Lephalala River	1.46	A50E	1.55	1.76	1.87	1.99	2.12		
		Sub-Total Water Abstractions (million	n <u>m³/a)</u>		48.12								
		Modimole Town	Donkerpoort Dam	Little Nyl	2.19	A61A	4.20	4.65	4.90	5.18	5.50		
			Groundwater Aquifer	Groundwater	0.44	A61A	0.48	0.59	0.65	0.72	0.79		
	Ri 1	Irrigation	Groundwater Aquifer	Groundwater		A61A							
		Sub-Total Water Abstractions (million	n m³/a)		2.63		4.69	5.24	5.55	5.90	6.29		
		Mookgophong Town	Welgevonden Dam	Sterk River	0.73	A61H	0.81	1.00	1.11	1.23	1.36		
			Nyl River Wellfield	Groundwater	1.42	A61H	1.58	1.94	2.16	2.39	2.66		
		Mokopane Town & surrounds	Doorndraai Dam	Sterk River	6.21	A61F	6.94	8.67	9.69	10.83	12.11		
	Pi 5												
	RI J	Legends Golf Course	Doorndraai Dam	Sterk River	0.27	A61J	0.27	0.27	0.27	0.27	0.27		
R Mogalakwena R		Irrigation agriculture	Doorndraai Dam	Sterk River	4.26	A61J	4.26	4.26	4.26	4.26	4.26		
		Mines	Doorndraai Dam	Sterk River	1.74	A61D	1.74	1.74	1.74	1.74	1.74		
		Mines - Mogalakwena Platinum Mine	Return Flows	Sand River catchment	8.90	A61G	9.66	11.38	12.35	13.40	14.54		
		Sub-Total Water Abstractions (million m ³ /a)			23.53		25.26	29.26	31.57	34.12	36.93		
		Irrigation agriculture - Glen Alpine Dam	Glen Alpine Dam	Mogalakwena	7.30	A63A	7.30	7.30	7.30	7.30	7.30		
		Water Losses	Glen Alpine Dam	Mogalakwena	5.48	A63 A	5.48	5.48	5.48	5.48	5.48		
	Ri 14	Irrigation agriculture	Groundwater	Groundwater	43.20	A63B	43.20	43.20	43.20	43.20	43.20		
		Domestic	Glen Alpine Dam	Mogalakwena	3.34	A63B	3.60	4.18	4.50	4.85	5.22		
		Livestock	Mogalakwena	Mogalakwena	3.50		3.50	3.50	3.50	3.50	3.50		
		Sub-Total Water Abstractions (million	n m ³ /a)		59.32	-							
		Polokwane - Domestic & Industrial	Seshego Dam	Bloed River	3.66	A71A	37.63	51.57	60.36	70.66	82.71		
			Chuenespoort Dam										
			Mashashane Dam	Hout River	0.37	A71E	0.43	0.59	0.69	0.81	0.95		
		Moletjie - Domestic & Industrial	Houtrivier Dam	Hout River	0.47	A71E	0.50	0.55	0.58	0.61	0.64		
			Molepo Dam		0.76		0.80	0.89	0.94	0.99	1.04		
Sand River	Ri20	Silicon Smelters Mine			15.10	A71A							
		Irrigation agriculture	Sand River Aquifer	Groundwater	126.80	A71G / A72A	126.80	126.80	126.80	126.80	126.80		
		Makhado Town					4.08	5.30	6.04	6.88	7.84		
		Musina Town	Limpopo River - aquifer	Limpopo	6.57	A71K	7.86	11.25	13.45	16.09	19.25		
		Sinthumule / Kutama RWS	Groundwater Aquifer	Sand River catchment	0.94	A71H	1.12	1.61	1.93	2.30	2.76		
		Waterpoort Water Supply											
		Sub-Total Water Abstractions (million	n m³/a)		154.67	-							

Figure 4-2: Mogalakwena River catchment demands and existing water resource infrastructure

April 2024

4.3.2 Return Flow Analysis

There are several WWTWs in the Mogalakwena River catchment whose discharge points are upstream of the EWR sites. These were factored in the hydrological modelling of the system to determine the flows at each EWR site (see **Table** 4-2 above).

The irrigation return flows were also factored in the hydrological modelling of the systems.

4.3.3 Water Requirements Forecast and Proposed Development Options

Growth in the domestic, industries and mining water requirements is indicated in Table 4-3 above.

There is limited capacity to develop the local resources to meet these growing demands. Therefore, additional transfers from Flag Boshielo Dam and potentially from Klipvoor Dam into the Mogalakwena catchment are planned as indicated in **Figure** 4-2 above. There will also be increased return flows from the WWTWs into the catchment. It is anticipated that some of these return flows will be used.

The growth in water requirements that affect the EWR sites (**Table** 4-3) has been factored into future scenarios.

4.4 Sand River Catchment

4.4.1 Current water requirements and existing water resource infrastructure

The provincial city of the Limpopo Province, Polokwane, is in the upper Sand River catchment (see **Figure** 4-3 below). Significant developments have occurred in the Sand River catchment, including urban and rural communities, irrigation agriculture, and mining activities in the lower Sand River catchment. These are dependent on the water resources of the Sand River catchment.

The surface water resources of the Sand catchment are minimal. Although there are significant groundwater aquifers that are used for both irrigation agriculture and domestic water use, additional water is transferred from the neighbouring catchment to augment the limited water resources of the Sand catchment. As illustrated in **Figure** 4-3, there are two primary transfer schemes, one from the Letaba catchment and the second from the Olifants catchment. The water allocations for transfer from these two catchments into the upper Sand catchment are indicated in **Table** 4-1 above. Irrigation agriculture accounts for nearly 82% of the current water requirements. This is mainly from groundwater and some from return flows from the WWTWs.

The EWR site is downstream of Polokwane town and is affected by the return flows discharged into the Sand River. Some return flows are transferred to the Mogalakwena catchment for mine water use and at Mooketsi for irrigation in the Letaba catchment by ZZ2.

Figure 4-3: Sand River Catchment – Demands and Existing Water Resource Infrastructure

April 2024

4.4.2 Return Flow Analysis

There are several WWTWs, as indicated in **Table** 4-2 above. These return flows were factored into the hydrological modelling of the flows going past the EWR site. With most irrigation dependent on groundwater downstream of the site, the return flows from irrigation agriculture are not likely to impact the flows at the EWR site.

4.4.3 Water Requirements Forecast and Proposed Development Options

The growth of the town of Polokwane and the planned Musina-Makhado Special Economic Zone (MSEZ) development will significantly impact the water requirements of the Sand River catchment. In addition, depending on the market conditions, there are plans to open new coal mines in the Sand / Nzhelele watershed, as indicated in **Figure** 4-3 above.

To meet these growing needs of the Sand catchment, the following water resource developments are envisaged in the medium to long term:

- There are plans to transfer water from the Luvuvhu River catchment to meet the growing water requirements of the upper Sand River catchment.
- There are programmes to reduce water loss by undertaking AC pipe replacement in Polokwane. This will impact the return flows flowing downstream into the Sand River catchment.
- Potential dam sites were identified in the lower Sand River catchment to supply the gazetted Musina SEZ south site. These are the Sand River Dam and Musina Dam (see **Figure** 4-4 below), which will be pumped water storage dams with water pumped from the Limpopo River to supplement the Sand River flows.

The impact of the additional flows was then modelled in the hydrological analysis to determine the flows at each EWR site affected by the additional water resource developments in the catchment.

4.5 Nzhelele River Catchment

4.5.1 Current water requirements and existing water resource infrastructure

The Nzhelele River catchment is dominated by irrigation agriculture supplied by the Nzhelele Dam. This is the only dam in the catchment (see **Figure** 4-4 below). The domestic water use in the catchment is not significant, as illustrated in **Table** 4-4 below. It only accounts for 20.3% of the current water use at the different levels of assurance of supply.

It is essential to note the following:

- The yield of the Nzhelele Dam has been fully allocated, and the required level of assurance supply has been overallocated. Therefore, the level of assurance of supply for irrigation water use has dropped.
- There are much higher releases to meet the irrigation demands because of the canal conveyance water losses. With the EWR site downstream of the releases, any changes to the current water use and operating practices will impact the flows at the EWR site.

4.5.2 Return Flow Analysis

The existing WwTWs in the Nzhelele River catchment are mainly oxidation ponds, which do not discharge into the downstream river reaches, but the final water evaporates into the atmosphere. This is illustrated in **Table** 4-5 below.

The return flows from the irrigation agriculture water were included in the hydrological modelling of the Nzhelele River catchment.

4.5.3 Water Requirements Forecast and Proposed Development Options

Because of the limited capacity of the existing water resources of the Nzhelele River catchment, growth in water requirements for irrigation agriculture would not be possible. Irrigation agriculture is therefore not expected to grow. The raw water abstraction for irrigation agriculture would increase up to its authorised allocation.

It is envisaged that there will be growth in the future water requirements of the domestic and industrial sectors. This is because of plans to develop the coal mines, namely Makhado and Generaal Project coalfields. These developments will require augmentation of the water resources in the catchments.

The proposed development and management options to meet the water requirements in the domestic, industrial and coal mining projects in the catchment include the following:

- The development of a dam in the Mutamba River, a tributary of the Nzhelele River. The dam will provide an additional storage capacity of 5 million m³. This will provide water for the mining activities of the proposed coal mining developments.
- Implement an irrigation water management plan to reduce the high canal conveyance losses. This will then be transferred for use in coal mining activities. This will reduce the return flows from the irrigation agriculture to the downstream EWR site in the Nzhelele River catchment.

The impact of the reduced contribution of the proposed Mutamba Dam to the run-off into the Nzhelele River catchment was modelled to determine the flow regime at the EWR site in the Future scenario.

Figure 4-4: Nzhelele River Catchment – Demands and Existing Water Resource Infrastructure

Table 4-4: Current Water Requirements of the Nzhelele, Nwanedi, Mutale, Luvuvhu and Shingwedzi

Cotohmont	EWR Site	Current Water User -20	River System	Current Abstraction	Quaternary Catchment	Water Transfe	ers in		
Catchment	EWR Site	Username	Source		(million m³/a)		From which resource	million m³/a	Water Use Point
		Nzhelele Domestic Water Supply -VDM	Nzhelele Dam	Nzhelele River	2.56				
		Mutshedzi Water Supply Scheme	Mutshedzi Dam	Mutshedzi River	4.32				
Nzhelele	Ri 27	Nzhelele Irrigation Board	Nzhelele Dam	Nzhelele River	29.10				
Nzhelele F Nwanedi F Mutale F		Tshipise Holiday Resort	Nzhelele Dam	Nzhelele River	0.50				
		Sub-Total Water Abstrac	tions (million m ³ /a)		36.48	-	-	-	-
CatchmentEVNzheleleRiİNwanediRi2MutaleRi3LuvuvhuRi3ShingwedziI	Ri28	Nwanedi Irrigation Scheme	Ņwanedi Dam	Ņwanedi River	5.31				
		Cross Dam Irrigation Scheme	Cross Dam	Ņwanedi River					
		Luphephe RWS	Żwanedi Dam	Nwanedi River	1.14				
		Masisi RWS	Nwanedi Dam	Nwanedi River					
		Sub-Total Water Abstrac	tions (million m ³ /a)		6.45	-	-	-	-
		Mutale RWS	Mutale River	Mutale River	0.62				
Mutale	Ri33, Ri34	Mukumbani Tea Estate	Mukumbani Dam	Mutale River	6.83				
		Sub-Total Water Abstrac	tions (million m ³ /a)		7.45	-	-	-	-
		Luvuvhu Irrigation Scheme	Albasini Dam	Luvuvhu River	18.25				
1	Riii6, Ri30,	Makhado LM	Various	Luvuvhu River	8.57				
Luvuvnu	Ri32	Thulamela	Various - Nandoni	Luvuvhu River	34.13				
		Sub-Total Water Abstrac	tions (million m ³ /a)		68.40	-	-	-	-
		Collins Chabane LM							
Shingwedzi		Collins Chabane LM	Various WTW	Luvuvhu River	7.50				
		Sub-Total Water Abstrac	tions (million m ³ /a)	Niver SystemAbstractionCatchmentWate(million m³/a)(million m³/a)From resoNzhelele River2.56-Mutshedzi River4.32-Nzhelele River29.10-Nzhelele River0.50-/a)36.48-Ńwanedi River5.31-Ńwanedi River1.14-Ńwanedi River6.45-/a)6.45-Mutale River0.62-Mutale River6.83-/a)7.45-Luvuvhu River18.25-Luvuvhu River34.13-/a)68.40-Luvuvhu River7.50-Luvuvhu River7.50-	-	-	-		

Catchment		Current Water User - PES (2022)		River System	Current Abstraction	Quaternary Catchment	Water Requirements Projections				
	EWR Site	Username	Source		(million m³/a)		2025	2035	2040	2045	2050
		Nzhelele Domestic Water Supply -VDM	Nzhelele Dam	Nzhelele River	2.56	A80G	2.83	3.49	3.87	4.30	4.77
	D: 07	Mutshedzi Water Supply Scheme	Mutshedzi Dam	Mutshedzi River	4.32	A80A	4.72	5.61	6.12	6.67	7.28
Nzhelele	Ri 27	Nzhelele Irrigation Board	Nzhelele Dam	Nzhelele River	29.10	A80G	29.10	29.10	29.10	29.10	29.10
		Makhado Coal Mine	Nzhelele Dam /Mutamba Proposed Dam	Mutamba River	-	A80F	0.37	0.64	1.28	1.28	1.92
		Sub-Total Water Abstractions (million m ³ /a)			35.98	-					
		Nwanedi Irrigation Scheme	Ńwanedi Dam	Nwanedi River	5.31	A80J	5.31	5.31	5.31	5.31	5.31
	Ri28	Cross Dam Irrigation Scheme	Cross Dam	Nwanedi River							
Nwanedi		Luphephe RWS	Ńwanedi Dam	Nwanedi River	1.14	A80H	1.22	1.39	1.49	1.59	1.70
		Masisi RWS	Ńwanedi Dam	Nwanedi River	0.46	A80J	0.49	0.56	0.60	0.64	0.69
		Sub-Total Water Abstractions (million m ³ /a)			6.91	-	7.02	7.27	7.40	7.55	7.70
		Mutale RWS	Mutale River	Mutalle River	0.62		0.66	0.76	0.81	0.87	0.93
Mutale	Ri33, Ri34	Mukumbani Tea Estate	Mukumbani Dam	Mutalle River	6.83		6.83	6.83	6.83	6.83	6.83
		Sub-Total Water Abstractions (milli	on m³/a)		7.45	-	7.49	7.58	7.64	7.69	7.75
		Luvuvhu Irrigation Scheme	Albasini Dam	Luvuvhu River	18.25		18.25	18.25	18.25	18.25	18.25
Lunandari		Thulamela	Various - Nandoni	Luvuvhu River	34.13		38.33	48.36	54.31	61.00	68.51
Luvuvnu	KIIIO, KIJU, KIJZ	Collins Chabane LM	Various WTW	Luvuvhu River	7.50		8.42	10.63	11.93	13.40	15.06
		Sub-Total Water Abstractions (million m ³ /a)			67.33	-					
		Collins Chabane LM									
Shingwedzi		Collins Chabane LM	Various WTW	Luvuvhu River	7.50		8.42	10.63	11.93	13.40	15.06
-		Sub-Total Water Abstractions (milli	on m³/a)		7.50	-					

Table 4-5: Water Requirements Projections for the Nzhelele, Nwanedi, Mutale, Luvuvhu and Shingwedzi

4.6 Mutale / Luvuvhu River Catchment

4.6.1 Current water requirements and existing water resource infrastructure

The Nandoni and Vondo Dams are situated in the Luvuvhu River catchment and provide the domestic and irrigation agriculture water requirements. Several smaller dams also provide domestic water requirements.

As indicated in **Table** 4-4 above:

- The irrigation allocation for the Mukumbani Tea estate was considered in the current water requirements, although the current abstraction is much less than the total allocation for the scheme.
- The Luvuvhu Irrigation Scheme, with releases from Albasini Dam, is the largest water user, with a total water allocation of 18.25 million m³/a for irrigation.

The current water requirements in the Mutale and Luvuvhu River catchments are upstream of the EWR sites and will impact the flows at the sites.

Water transfers from the Nandoni Dam to Makhado are made to supplement the area's groundwater resources for domestic and industrial water use in the town. This was indicated in the Sand River catchment as a demand.

4.6.2 Return Flow Analysis

The principal return flows in the Mutale and Luvuvhu River catchments are from the conventional wastewater treatment works, which discharge into the rivers upstream of the EWR sites, contributing to the flows past these sites. These include the Thohoyandou WWTW, which has a treatment capacity of 12 Ml/d. Its current utilisation is 80% of the plant capacity, meaning 3.5 million m³/a is discharged into the Luvuvhu River system.

4.6.3 Water Requirements Forecast and Proposed Development Options

The water requirements for the domestic and industrial water users in the Mutale and Luvuvhu River catchments are envisaged to increase as the population and service levels improve (see **Table** 4-5).

Significant water resource development is planned for the Mutale River catchment to meet these future water requirements. There is also the potential for the raising of the Vondo Dam. Additional groundwater to augment the surface water resource is planned to supply the future water requirements, particularly in the outlying rural communities. The proposed dam in the Mutale River, known as the Rambuda Dam (see **Figure** 4-5 below), will have an excess yield to supply some of the water for the proposed Musina-Makhado Special Economic Zone, south site in Musina.

According to the Directorate of Water Use, there is a water use licence application that requires the transfer of approximately 5 million m³/a from Nandoni Dam to augment the water resources of Giyani town and the surrounding communities. There are, therefore, plans for an interbasin transfer from the Luvuvhu River catchment to the Middle Letaba River system.

Water use developments affecting EWR sites have been modelled for future scenarios.

Figure 4-5: Mutale / Luvuvhu River Catchments – Demands and Existing and Potential Water Resources Infrastructure

4.7 Shingwedzi River Catchment

4.7.1 Current water requirements and existing water resource infrastructure

The current water requirements of the Shingwedzi River catchment are dominated by domestic and small industries with ecotourism being another user in the catchment. Although there are water requirements for agriculture, this is mainly for subsistence agriculture in the catchment.

The main dam in the catchment is the Makuleke Dam, which is in the Mphongolo River, a tributary of the Shingwedzi River (see **Figure** 4-6 below).

4.7.2 Return Flow Analysis

There are minimal return flows from the wastewater treatment works. This is because most treatment works are oxidation ponds that do not discharge the final effluent into the rivers.

4.7.3 Water Requirements Forecast and Proposed Development Options

The future water requirements of the domestic, small industries and ecotourism are envisaged to increase as the population of the Shingwedzi River catchment increases. This is illustrated in **Table** 4-5 above.

No significant developments are expected in the Shingwedzi catchment because of its pristine nature, particularly downstream from Makuleke Dam. The future water requirements will be met from the conjunctive use of groundwater and surface water resources, which are upstream of the LIMCOM EWR site located at the border with the Kruger National Park.

Figure 4-6: Shingwedzi River Catchment – Demands and Existing and Potential Water Resource Infrastructure

5 DESCRIPTION OF THE SCENARIOS

Four scenarios were assessed using DRIFT-Limpopo:

- **PES** (2022), which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at 2022 levels.
- **Reference**, which used the climatic period of 1925-2021 with human influences such as waterresource developments, population and land use at *c*. 1900 levels.
- Future1, which overlaid 2050 water resource developments on PES (2022).
- Future2, which overlaid a dry future climate scenario onto Future1.

DRIFT-Limpopo was calibrated against the PES (2022) and Reference scenarios. The Future1 and Future2 scenarios were then run through the DRIFT-Limpopo to predict the effects of additional planned water-resource developments without and with a dry climate, respectively. The water-resource development plans differ between the basins, and in some basins there are no future water developments planned (**Table** 5-1) (DWS Technical Task Team meeting June 2023, pers.comm T. Nditwani 2023).

EWR site	Future Use
1_Lephalala	Х
2_Rietfontein	
3_Olifantspruit	
4_Mogalakwena1	Х
5_Mogalakwena2	Х
6_Kolope	
7_Sand	Х
8_Nzhelele	Х
9_Nwanedi	Х
10_Latonyanda	
11_Mutshindudi	Х
12_Luvuvhu	Х
13_Mutale1	Х
14_Mutale2	X

Table 5-1: EWR sites where Future1 developments are planned

The factors considered in the **Future1** scenario (**Table** 5-2) include increasing return flows from Waste Water Treatment Works (WWTW), raising existing dams or building new dams (increased storage), increasing releases from dams for domestic or agricultural supply, decreasing releases from dams because of increasing demands, increasing flows from inter-basin transfers, and increasing domestic, mining, industrial or agricultural water use (DWS Technical Task Team meeting June 2023, pers.comm T. Nditwani 2023).

Since the locations of the different developments planned vary, the consequences on the modelled flow regimes for the Future1 scenario were not the same (**Table** 5-3). At the following EWR sites:

• 1_Lephalala, a 5% increase in water use and no increase in return flows throughout the year is planned.

• 4_Mogalakwena1, return flows increase dry season low flows significantly and wet season flows are relatively unaffected.

Table 5-2: Factors relevant for the Future1	scenario
---	----------

EWR site	Increased return flows	New dam storage/ Increased dam storage	Incoming inter-basin transfers	Transfers of return flows out of catchment	Increased water use
1_Lephalala					х
4_Mogalakwena1	х				
5_Mogalakwena2	х				
7_Sand	х		Х		х
8_Nzhelele		х			х
9_Nwanedi					х
11_Mutshindudi		х			х
12_Luvuvhu	х			х	х
13_Mutale1		Х			Х
14_Mutale2		Х			

Table 5-3 Monthly flow volumes (Mm³) in the PES (2022) and Future1 scenarios

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
	1_Lephalala												
Reference	0.99	2.03	4.81	8.54	12.81	12.44	8.81	5.98	4.29	2.85	1.63	1.03	66.22
PES (2022)	0.47	1.16	3.2	6.39	11.24	11.4	8.24	5.52	3.62	2.12	0.92	0.52	54.8
Future1	0.47	1.1	2.98	5.92	10.64	10.87	7.8	5.25	3.43	1.97	0.88	0.51	51.8
Future2	0.3	0.7	3.1	6.5	8.9	7.9	5.4	3.6	2.2	1.2	0.5	0.4	40.7
	4_Moga	lakwena											
Reference	2.7981	9.62	15.2	26.7	31.9	15.1	8.46	5.04	3.79	3.46	3.1	2.76	2.7981
PES (2022)	0.4545	4.03	8.11	16	23.8	9.68	4.54	1.96	1.18	1.05	0.79	0.6	0.4545
Future1	1.0072	3.83	7.76	15.6	23.2	9.83	4.92	2.52	1.77	1.64	1.38	1.2	1.0072
Future2	0.6231	1.94	9.06	8.87	7.64	2.72	1.82	1.17	0.98	0.93	0.83	0.75	0.6231
	5_Mogalakwena												
Reference	3.57	13.59	18.22	35.22	52.71	26.71	15.52	9.07	5.99	5	4.18	3.48	193.27
PES (2022)	0.6	6.29	8.42	20.18	42.04	18.75	9.68	4.21	1.85	1.33	0.6	0.35	114.3
Future1	0.69	5.9	7.91	19.85	41.24	18.64	9.79	4.44	2.12	1.59	0.78	0.44	113.4
Future2	0.47	2.44	9.05	10.14	13.49	5.14	3.57	1.6	0.59	0.48	0.23	0.21	47.4
	7_Sand												
Reference	0.28	1.00	1.52	7.00	12.12	4.53	0.58	0.18	0.09	0.07	0.04	0.03	27.45
PES (2022)	0.29	0.47	0.74	5.32	10.57	3.85	0.55	0.34	0.36	0.37	0.32	0.3	23.48
Future1	2.64	2.82	3.09	7.67	12.92	6.2	2.9	2.69	2.71	2.72	2.67	2.65	51.68
Future2	2.6	2.7	3.51	5.2	6.42	2.85	2.8	2.65	2.69	2.71	2.65	2.64	39.42
	8_Nzhel	ele											
Reference	1.94	2.16	3.99	14.55	25.45	18.86	11.34	7.28	5.27	3.93	2.86	2.1	99.73
PES (2022)	0.69	0.6	1.27	8.81	18.54	13.02	6.99	3.58	2.42	1.95	1.1	0.64	59.6
Future1	0.5	0.49	1.06	7.89	17.53	11.7	6.39	3.01	2.03	1.6	0.88	0.48	53.56
Future2	0.19	0.2	1.41	4.39	8.45	3.98	1.94	0.74	0.5	0.64	0.36	0.15	22.95
	9_Ņwan	eģi											
Reference	1.22	1.58	2.77	5.89	8.06	5	2.59	1.77	1.37	1.17	1.07	0.99	33.47
PES (2022)	0.38	0.58	1.32	4.06	6.47	3.96	1.7	1.06	0.76	0.62	0.52	0.43	21.87

April 2024

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Future1	0.34	0.54	1.26	3.96	6.4	3.9	1.65	1.01	0.71	0.57	0.47	0.39	21.21
Future2	0.13	0.23	1.58	2.8	3.64	1.76	0.85	0.56	0.42	0.35	0.28	0.23	12.84
	11_Muts	shindudi											
Reference	1.15	2.49	6.06	9.72	12.6	10.4	5.18	2.62	1.73	1.39	1.14	1.03	1.15
PES (2022)	0.74	1.43	4.18	8.16	11.5	9.36	4.37	1.97	1.31	1.06	0.88	0.75	0.74
Future1	0.7	1.18	2.92	5.48	8.91	7.97	3.71	1.87	1.29	1.06	0.87	0.74	0.7
Future2	0.46	0.79	3.14	5.01	6	4.55	1.98	1.21	0.87	0.74	0.61	0.52	0.46
	12_Luvu	ivhu											
Reference	9.21	14.53	30.39	61.94	92.59	78.99	40.74	21.61	15.83	12.85	10.73	9.12	398.52
PES (2022)	1.6	4.35	15.92	44.68	75.56	60.9	25.76	8.19	4.41	2.87	1.96	1.56	247.8
Future1	1.3	3	10.23	29.78	61.68	51.44	21.06	6.27	3.52	2.44	1.87	1.43	194
Future2	0.58	1.82	11.41	22.51	33.6	22.14	7.14	2.99	1.79	1.39	1.03	0.76	107.17
	13_Muta	ale1											
Reference	2.89	5.8	12.13	22.51	31.19	24.12	11.86	4.52	2.52	2.3	1.89	1.87	2.89
PES (2022)	2.23	4.99	11.12	21.24	29.76	22.83	10.9	3.83	1.93	1.7	1.29	1.32	2.23
Future1	0.62	2.14	7.58	18.49	27.65	20.59	8.91	2.18	0.73	0.48	0.4	0.37	0.62
Future2	0.13	0.8	7.79	16.37	19.26	11.36	4.18	0.86	0.19	0.18	0.16	0.11	0.13
	14_Muta	14_Mutale2											
Reference	3.24	6.91	15.51	29.34	42.25	29.78	13.23	4.99	2.86	2.6	2.14	2.09	154.95
PES (2022)	2.54	6.03	14.4	27.92	40.66	28.39	12.22	4.26	2.23	1.97	1.51	1.51	143.6
Future1	0.8	3.03	10.7	25.08	38.48	26.05	10.14	2.55	0.99	0.7	0.58	0.53	119.6
Future2	0.23	1.35	12.23	21.8	25.7	13.86	4.7	1.08	0.34	0.32	0.28	0.21	82.1

- 5_Mogalakwena2, return flows increase inflows into, and releases made from, Glen Alpine Dam in the dry season. Dry season low flows are higher and wet season high flows slightly lower because of increased water use from Glen Alpine that increases storage capacity.
- 7_Sand, there are large transfers from Seshego Dam into the Sand catchment via the Bloed River for Polokwane, which in turn increases return flows, some of which are taken up by irrigators. The remaining return flows create large elevated dry and wet season flows.
- 8_Nzhelele, increased water use and no increase in return flows result in a general reduction in flow throughout the year.
- 9_Nwanedi, increased water use and no increase in return flows result in a general reduction in flow throughout the year but less so than at 8_Nzhelele.
- 11_Mutshindudi, raising of Vondo Dam and increased water use from the dam result in a significant reduction in wet season flows. Low flows in the dry season remain unchanged as agricultural releases from Vondo Dam can still be met.
- 12_Luvuvhu, wet season flows are reduced because of increased demand from Nandoni Dam, which results in fewer wet season spills and lower dry season flows because Nandoni cannot meet all the required releases.
- 13_Mutale1 and 14_Mutale2, the building of Rambuda Dam on the Mutale River results in major reductions all year round due to increased demand from the river.

5.1 Ecologically-relevant flow indicators in DRIFT-Limpopo

Median values for the ecologically-relevant flow indicators are provided in **Table** 5-4. The values for the PES (2022) and Future1 scenarios are the same at 2_Rietfontein, 3_Olifantspruit, 6_Kolope and 10_Latonyanda because there are no developments planned (**Table** 5-1).

The ecologically-relevant flow indicators that best described the differences between scenarios are Mean Annual Runoff (MAR), discharge (Q) and volumes in the wet and dry seasons, duration and onset of the wet and dry seasons, the number of zero flow days and of flow days at depths >= 5 and 10 cm. The flow regime of the Reference scenario is wetter than PES (2022) at all sites except for at 3_Olifantspruit, 13_Mutale1 and 14_Mutale2 where PES (2022) and Reference are similar (**Table** 5-4). The flows at 4_Mogalakwena1, 5_Mogalakwena2 and 7_Sand are wetter in the Future1 scenario when compared to PES (2022) and drier at 1_Lephalala, 8_Nzhelele, 9_Nwanedi, 11_Mutshindudi, 12_Luvuvhu, 13_Mutale1 and 14_Mutale2. The flow regime of the Future2 scenario is wetter at the non-perennial river 7_Sand and drier at all the other sites.

Table 5-4: Ecologically-relevant flow indicators in DRIFT-Limpopo (median values)

	Scenario						
EWR site	PES (2022)	Reference	Future1	Future2			
1_Lephalala	•			•			
Mean annual runoff (m ³ /s)	1.2	1.6	1.1	0.8			
Dry onset (calendar week)	22.0	18.0	22.0	14.0			
Dry duration (days)	215.0	202.5	215.5	255.5			
Dry minimum 5-day Q (m ³ /s)	0.03	0.09	0.03	0.02			
Wet onset (hydrological week)	16.0	12.0	15.5	15.5			
Wet duration (days)	102.5	127.0	100.0	70.0			
Wet maximum 5-day Q (m ³ /s)	6.3	8.0	5.5	4.0			
Wet maximum instantaneous 5-day Q (m ³ /s)	8.6	10.7	7.7	5.6			
Wet maximum 5-day Q-Baseflow (m ³ /s)	2.57	3.51	2.28	1.75			
Wet season volume (m ³ x 10 ⁶)	20.78	30.68	19.16	10.22			
Dry average daily volume (m ³ x 10 ⁶)	0.034	0.056	0.034	0.029			
T1 average daily volume (m ³ x 10 ⁶)	0.090	0.088	0.082	0.080			
Wet average daily volume (m ³ x 10 ⁶)	0.235	0.272	0.221	0.169			
T2 average daily volume (m ³ x 10 ⁶)	0.106	0.109	0.102	0.097			
T1 duration (days)	15.50	16.50	16.00	15.50			
Zero days per year (days)	2.26	1.98	2.26	2.26			
(max)Continuous days>=5 cm deep (days)	327.50	353.50	327.50	327.50			
(max)Continuous days>=10 cm deep (days)	302.50	322.00	301.50	289.50			
2_Rietfontein							
Mean annual runoff (m ³ /s)	0.0004	0.0009	0.0004	0.0003			
Dry onset (calendar week)	17.00	14.00	15.00	16.00			
Dry duration (days)	255.00	270.00	259.00	268.00			
Dry minimum 5-day Q (m ³ /s)	0.0000	0.0000	0.0000	0.0000			
Wet onset (hydrological week)	15.00	15.00	15.00	15.00			
Wet duration (days)	61.50	59.00	60.00	60.00			
Wet maximum 5-day Q (m ³ /s)	0.0074	0.0128	0.0074	0.0042			
Wet maximum instantaneous 5-day Q (m ³ /s)	0.0115	0.0145	0.0115	0.0035			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.0036	0.0038	0.0036	0.0020			
Wet season volume (m ³ x 10 ⁶)	0.0050	0.0122	0.0050	0.0016			
Dry average daily volume (m ³ x 10 ⁶)	0.0000	0.0000	0.0000	0.0000			
T1 average daily volume (m ³ x 10 ⁶)	0.0001	0.0001	0.0002	0.0001			
Wet average daily volume (m ³ x 10 ⁶)	0.0004	0.0005	0.0004	0.0003			
T2 average daily volume (m ³ x 10 ⁶)	0.0000	0.0001	0.0000	0.0000			
T1 duration (days)	24.00	18.00	20.50	31.00			
Zero days per year (days)	328.56	319.52	327.46	340.28			
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00			
(max)Continuous days>=10 cm deep (days)	4.00	8.00	4.00	0.00			
3_Olifantspruit							
Mean annual runoff (m ³ /s)	0.16	0.17	0.16	0.09			
Dry onset (calendar week)	13.00	13.00	13.00	10.00			
Dry duration (days)	256.50	242.00	256.50	295.50			
Dry minimum 5-day Q (m ³ /s)	0.002	0.004	0.002	0.000			
Wet onset (hydrological week)	10.00	9.00	10.00	10.00			
Wet duration (days)	73.50	82.00	73.50	37.00			

April 2024

	Scenario						
EWR site	PES (2022)	Reference	Future1	Future2			
Wet maximum 5-day Q (m ³ /s)	1.65	1.82	1.65	0.76			
Wet maximum instantaneous 5-day Q (m ³ /s)	3.36	3.54	3.36	1.10			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.36	0.38	0.36	0.26			
Wet season volume (m ³ x 10 ⁶)	2.33	2.75	2.33	0.76			
Dry average daily volume (m ³ x 10 ⁶)	0.00	0.01	0.00	0.00			
T1 average daily volume (m ³ x 10 ⁶)	0.01	0.01	0.01	0.01			
Wet average daily volume (m ³ x 10 ⁶)	0.03	0.04	0.03	0.03			
T2 average daily volume (m ³ x 10 ⁶)	0.01	0.01	0.01	0.01			
T1 duration (days)	20.00	28.00	20.00	19.50			
Zero days per year (days)	10.15	8.67	10.15	17.90			
(max)Continuous days>=5 cm deep (days)	329.50	329.50	329.50	319.00			
(max)Continuous days>=10 cm deep (days)	179.50	186.00	179.50	119.00			
4_Mogalakwena1							
Mean annual runoff (m ³ /s)	0.47	2.28	0.67	0.26			
Dry onset (calendar week)	18.00	17.00	16.50	12.00			
Dry duration (days)	245.00	225.00	271.50	293.50			
Dry minimum 5-day Q (m ³ /s)	0.00	0.04	0.01	0.00			
Wet onset (hydrological week)	15.00	5.00	11.00	11.00			
Wet duration (days)	72.00	124.00	30.00	7.00			
Wet maximum 5-day Q (m ³ /s)	3.80	23.87	4.99	1.25			
Wet maximum instantaneous 5-day Q (m ³ /s)	4.48	43.95	9.22	1.75			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.98	2.87	1.04	0.37			
Wet season volume (m ³ x 10 ⁶)	1.53	33.33	4.50	0.41			
Dry average daily volume (m ³ x 10°)	0.02	0.11	0.04	0.02			
T1 average daily volume (m ³ x 10°)	0.08	0.16	0.09	0.04			
Wet average daily volume (m ³ x 10 ⁶)	0.18	0.37	0.21	0.07			
12 average daily volume (m ³ x 10°)	0.06	0.09	0.08	0.07			
11 duration (days)	30.50	4.00	20.50	31.00			
Zero days per year (days)	132.54	3.32	3.59	4.67			
(max)Continuous days>=5 cm deep (days)	180.50	290.50	265.00	241.50			
(max)Continuous days>=10 cm deep (days)	148.00	262.00	200.50	183.00			
5_Mogalakwenaz	0.6	2.2	0.6	0.1			
Dry opact (colonder wook)	19.0	3.3	19.0	19.0			
Dry duration (days)	10.0	211.0	10.0	10.0			
Dry duration (days)	233.5	211.0	231.5	0.0010			
Wet onset (bydrological week)	0.0000	5.0	0.0000	15.0			
Wet duration (days)	90.0	127.0	90.0	90.0			
Wet maximum 5-day Ω (m ³ /s)	2.9	30.3	2.9	0.7			
Wet maximum instantaneous 5-day Ω (m ³ /s)	2.0	52.1	3.0	0.7			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.65	3.71	1.31	0.42			
Wet season volume (m ³ x 10 ⁶)	1.39	59.37	1.58	1.36			
Dry average daily volume $(m^3 \times 10^6)$	0.02	0 15	0.02	0.01			
T1 average daily volume ($m^3 \times 10^6$)	0.10	0.22	0.09	0.01			
Wet average daily volume (m ³ x 10 ⁶)	0.2	0.6	0.2	0.0			
T2 average daily volume ($m^3 \times 10^6$)	0.0	0.1	0.1	0.0			
T1 duration (days)	31.0	4.5	31.0	31.0			
Zero davs per vear (davs)	27.0	4.0	27.0	27.0			
(max)Continuous days>=5 cm deep (days)	203.00	295.00	203.00	203.00			
(max)Continuous days>=10 cm deep (days)	169.00	260.00	169.00	106.00			
6 Kolope							
Mean annual runoff (m ³ /s)	0.00	0.01	0.00	0.00			
Dry onset (calendar week)	22.00	14.00	22.00	22.00			
Dry duration (days)	254.50	265.00	254.50	215.00			
Dry minimum 5-day Q (m ³ /s)	0.00	0.00	0.00	0.00			
Wet onset (hydrological week)	19.00	19.00	19.00	19.00			
Wet duration (days)	89.00	64.50	89.00	89.00			
Wet maximum 5-day Q (m ³ /s)	0.02	0.08	0.02	0.00			
Wet maximum instantaneous 5-day Q (m ³ /s)	0.01	0.10	0.01	0.00			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.00	0.03	0.00	0.00			
Wet season volume (m ³ x 10 ⁶)	0.00	0.05	0.00	0.00			
Dry average daily volume (m ³ x 10 ⁶)	0.00	0.00	0.00	0.00			

	Scenario						
EWR site	PES (2022)	Reference	Future1	Future2			
T1 average daily volume (m ³ x 10 ⁶)	0.00	0.00	0.00	0.00			
Wet average daily volume (m ³ x 10 ⁶)	0.00	0.00	0.00	0.00			
T2 average daily volume (m ³ x 10 ⁶)	0.00	0.00	0.00	0.00			
T1 duration (days)	29.50	18.50	29.50	31.00			
Zero days per year (days)	324.375	228.812	324.375	337.781			
(max)Continuous days>=5 cm deep (days)	4.00	44.00	4.00	0.00			
(max)Continuous days>=10 cm deep (days)	0.00	5.00	0.00	0.00			
/_Sand	0.147	0.007	1.040	1 024			
Dry opset (calendar week)	0.147	0.207	10.000	10.500			
Dry duration (days)	286,000	9.000	268 500	272 500			
Dry minimum 5-day Ω (m ³ /s)	0.006	0.000	0.048	0.043			
Wet onset (hydrological week)	15,000	11 000	9,000	9,000			
Wet duration (days)	7 500	28,500	80,500	81,500			
Wet maximum 5-day Q (m ³ /s)	1.944	4.706	6.533	5.692			
Wet maximum instantaneous 5-day Q (m ³ /s)	4.155	10.126	17.832	15.731			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.195	0.398	0.877	0.848			
Wet season volume (m ³ x 10 ⁶)	0.606	3.184	11.513	9.765			
Dry average daily volume (m ³ x 10 ⁶)	0.010	0.006	0.085	0.083			
T1 average daily volume (m ³ x 10 ⁶)	0.013	0.042	0.051	0.050			
Wet average daily volume (m ³ x 10 ⁶)	0.063	0.112	0.118	0.111			
T2 average daily volume (m ³ x 10 ⁶)	0.010	0.013	0.029	0.027			
T1 duration (days)	33.500	11.500	7.000	7.000			
Zero days per year (days)	5.385	31.261	3.589	3.589			
(max)Continuous days>=5 cm deep (days)	62.000	31.000	212.000	195.000			
(max)Continuous days>=10 cm deep (days)	5.000	13.000	183.000	183.000			
8_Nzhelele							
Mean annual runoff (m ³ /s)	1.0	1.8	0.3	0.1			
Dry onset (calendar week)	17.5	23.0	22.0	22.0			
Dry duration (days)	231.5	184.0	237.0	240.5			
Dry minimum 5-day Q (m/s)	16.0	0.3	15.0	15.0			
Wet duration (days)	53.5	13.0	117.0	120.0			
Wet maximum 5-day Ω (m ³ /s)	4.7	8.8	2.9	1 1			
Wet maximum instantaneous 5-day Q (m ³ /s)	7.3	12.8	3.5	1.1			
Wet maximum 5-day Q-Baseflow (m ³ /s)	1.0	2.6	0.5	1.1			
Wet season volume ($m^3 \times 10^6$)	7.5	30.4	1.4	0.5			
Dry average daily volume (m ³ x 10 ⁶)	0.1	0.1	0.0	0.0			
T1 average daily volume (m ³ x 10 ⁶)	0.1	0.1	0.1	0.1			
Wet average daily volume (m ³ x 10 ⁶)	0.2	0.3	0.2	0.1			
T2 average daily volume (m ³ x 10 ⁶)	0.1	0.1	0.1	0.0			
T1 duration (days)	16.5	19.5	13.0	31.0			
Zero days per year (days)	0.0	0.0	60.6	178.3			
(max)Continuous days>=5 cm deep (days)	364.0	364.0	273.0	92.0			
(max)Continuous days>=10 cm deep (days)	364.0	364.0	273.0	85.0			
9_Nwanedi	0.0	0.0	0.4	0.0			
Mean annual runoff (m ³ /s)	0.6	0.8	0.4	0.2			
Dry onset (calendar week)	15.0	17.0	18.0	17.0			
Dry duration (days)	259.0	224.5	247.5	253.0			
Wet opset (hydrological week)	12.0	8.0	17.0	17.0			
Wet duration (days)	75.5	110.5	59.5	68.0			
Wet maximum 5-day Ω (m ³ /s)	2.8	37	1 2	0.0			
Wet maximum instantaneous 5-day Ω (m ³ /s)	4.2	5.4	1.2	0.7			
Wet maximum 5-day Q-Baseflow (m ³ /s)	0.6	0.9	0.5	0.3			
Wet season volume (m ³ x 10 ⁶)	5.8	12.4	0.7	0.4			
Dry average daily volume (m ³ x 10 ⁶)	0.0	0.0	0.0	0.0			
T1 average daily volume (m ³ x 10 ⁶)	0.0	0.0	0.0	0.0			
Wet average daily volume (m ³ x 10 ⁶)	0.1	0.1	0.1	0.0			
T2 average daily volume (m ³ x 10 ⁶)	0.0	0.0	0.0	0.0			
T1 duration (days)	17.5	7.0	31.0	26.5			
Zero days per year (days)	0.0	0.0	50.0	90.0			

	Scenario					
EWR site	PES (2022)	Reference	Future1	Future2		
(max)Continuous days>=5 cm deep (days)	364.0	364.0	243.5	218.0		
(max)Continuous days>=10 cm deep (days)	297.0	364.0	234.0	174.0		
10_Latonyanda	•					
Mean annual runoff (m ³ /s)	0.47	0.63	0.47	0.34		
Dry onset (calendar week)	18.00	20.00	18.00	15.00		
Dry duration (days)	202.00	183.50	202.00	246.50		
Dry minimum 5-day Q (m ³ /s)	0.10	0.13	0.10	0.07		
Wet onset (hydrological week)	14.50	11.00	14.50	14.50		
Wet duration (days)	111.50	135.00	111.50	63.50		
Wet maximum 5-day Q (m ³ /s)	2.01	2.97	2.01	1.63		
Wet maximum instantaneous 5-day Q (m ³ /s)	2.86	4.28	2.86	2.13		
Wet maximum 5-day Q-Baseflow (m ³ /s)	1.02	1.38	1.02	0.72		
Wet season volume (m ³ x 10 ⁶)	9.66	14.49	9.66	5.02		
Dry average daily volume (m ³ x 10 ⁶)	0.02	0.02	0.02	0.02		
T1 average daily volume (m ³ x 10 ⁶)	0.02	0.03	0.02	0.02		
Wet average daily volume (m ³ x 10 ⁶)	0.08	0.10	0.08	0.08		
T2 average daily volume (m ³ x 10 ⁶)	0.04	0.04	0.04	0.04		
T1 duration (days)	33.00	31.50	33.00	29.00		
Zero days per year (days)	0.00	0.00	0.00	0.00		
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00		
(max)Continuous days>=10 cm deep (days)	250.50	303.50	250.50	213.50		
11_Mutshindudi						
Mean annual runoff (m ³ /s)	1.01	1.33	0.69	0.49		
Dry onset (calendar week)	14.00	15.00	15.00	12.50		
Dry duration (days)	232.50	209.50	232.50	275.00		
Dry minimum 5-day Q (m ³ /s)	0.16	0.22	0.16	0.10		
Wet onset (hydrological week)	15.00	11.00	16.50	16.50		
Wet duration (days)	86.50	111.00	55.50	14.50		
Wet maximum 5-day Q (m ³ /s)	5.11	6.60	2.69	1.88		
Wet maximum instantaneous 5-day Q (m ³ /s)	6.78	11.63	3.81	2.23		
Wet maximum 5-day Q-Baseflow (m ³ /s)	1.60	2.25	0.87	0.65		
Wet season volume (m ³ x 10 ⁶)	18.59	28.96	8.50	1.15		
Dry average daily volume (m ³ x 10°)	0.04	0.05	0.04	0.03		
T1 average daily volume (m ³ x 10 ⁶)	0.04	0.06	0.05	0.05		
Wet average daily volume (m ³ x 10 ^o)	0.23	0.27	0.16	0.13		
12 average daily volume (m ³ x 10°)	0.09	0.10	0.08	0.06		
11 duration (days)	38.50	27.00	45.00	31.00		
Zero days per year (days)	0.00	0.00	0.00	0.00		
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00		
(max)Continuous days>=10 cm deep (days)	364.00	364.00	364.00	334.00		
12_Luvuvnu Moon oppuol rupoff (m ³ /o)	1 10	0.02	2.40	1 10		
Dry apast (salandar wask)	4.40	9.03	2.40	1.19		
Dry duration (daya)	15.50	20.00	15.00	15.00		
Dry duration (days)	236.00	100.00	202.50	203.00		
Wet enset (bydrological week)	15.00	7.00	16.50	16.50		
Wet duration (days)	81.00	201.00	51.00	47.00		
Wet maximum 5-day Ω (m ³ /s)	37 35	63.45	17 32	9.10		
Wet maximum instantaneous 5-day Ω (m ³ /s)	5/ 39	95.45	28.58	10 20		
Wet maximum fiscantaneous 5-uay Q (m /s)	10.10	15.82	20.50	2.61		
Wet season volume $(m^3 \times 10^6)$	80.02	211 75	21.10	4 50		
Dry average daily volume $(m^3 \times 10^6)$	0.11	0.32	0.09	0.06		
T1 average daily volume ($m^3 \times 10^6$)	0.11	0.38	0.03	0.00		
Wet average daily volume (m ³ x 10 ⁶)	1 20	1 25	0.24	0.20		
T2 average daily volume ($m^3 \times 10^6$)	0.36	0.42	0.73	0.19		
T1 duration (days)	17.00	7 00	17 00	17 00		
Zero davs per vear (davs)	0.00	0.00	0.00	0.00		
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00		
(max)Continuous days>=10 cm deep (days)	334.00	364.00	324.00	284.50		
		Scer	nario			
--	------------	-----------	---------	---------		
EWR site	PES (2022)	Reference	Future1	Future2		
13_Mutale1						
Mean annual runoff (m ³ /s)	2.80	3.13	2.07	1.27		
Dry onset (calendar week)	15.00	15.50	15.00	14.00		
Dry duration (days)	211.00	204.50	242.50	265.50		
Dry minimum 5-day Q (m ³ /s)	0.18	0.32	0.03	0.02		
Wet onset (hydrological week)	10.00	9.00	15.00	15.00		
Wet duration (days)	120.00	125.50	90.00	60.50		
Wet maximum 5-day Q (m ³ /s)	20.39	21.62	16.00	11.88		
Wet maximum instantaneous 5-day Q (m ³ /s)	22.83	24.69	18.80	13.27		
Wet maximum 5-day Q-Baseflow (m ³ /s)	4.73	5.19	3.84	2.70		
Wet season volume (m ³ x 10 ⁶)	64.05	71.14	36.66	19.72		
Dry average daily volume (m ³ x 10 ⁶)	0.06	0.08	0.02	0.02		
T1 average daily volume (m ³ x 10 ⁶)	0.15	0.14	0.17	0.17		
Wet average daily volume (m ³ x 10 ⁶)	0.57	0.62	0.58	0.49		
T2 average daily volume (m ³ x 10 ⁶)	0.19	0.19	0.15	0.12		
T1 duration (days)	20.50	19.50	11.00	13.00		
Zero days per year (days)	0.00	0.00	0.00	0.00		
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00		
(max)Continuous days>=10 cm deep (days)	364.00	364.00	335.00	301.00		
14_Mutale2						
Mean annual runoff (m ³ /s)	3.12	3.44	2.32	1.55		
Dry onset (calendar week)	15.00	15.00	15.00	14.00		
Dry duration (days)	231.50	220.50	260.00	272.50		
Dry minimum 5-day Q (m ³ /s)	0.21	0.35	0.05	0.02		
Wet onset (hydrological week)	11.00	10.00	15.00	15.00		
Wet duration (days)	88.00	96.50	74.50	61.50		
Wet maximum 5-day Q (m ³ /s)	23.37	25.31	19.15	12.75		
Wet maximum instantaneous 5-day Q (m ³ /s)	32.43	33.60	28.34	16.38		
Wet maximum 5-day Q-Baseflow (m ³ /s)	5.51	5.74	4.92	3.23		
Wet season volume (m ³ x 10 ⁶)	55.60	62.55	42.23	18.67		
Dry average daily volume (m ³ x 10 ⁶)	0.08	0.10	0.04	0.03		
T1 average daily volume (m ³ x 10 ⁶)	0.24	0.23	0.32	0.31		
Wet average daily volume (m ³ x 10 ⁶)	0.70	0.69	0.74	0.55		
T2 average daily volume (m ³ x 10 ⁶)	0.22	0.23	0.17	0.14		
T1 duration (days)	17.00	16.00	5.00	11.00		
Zero days per year (days)	0.00	0.00	0.00	0.00		
(max)Continuous days>=5 cm deep (days)	364.00	364.00	364.00	364.00		
(max)Continuous days>=10 cm deep (days)	364.00	364.00	230.00	150.50		

5.2 Presentation of the results of the scenario analysis

The results for the scenarios are presented in terms of the predicted implications relative to PES (2022), and include, as appropriate:

- Individual discipline integrity
- Overall ecosystem integrity.

5.2.1 Overall Ecosystem Integrity

The overall Ecosystem Integrity is a measure of the expected condition or health of the river ecosystem based on the expected condition of the disciplines representing the river ecosystem (**Table** 1-1).

Ecosystem Integrity is predicted for each site/scenario as a measure of how far the scenarios would move the condition of the ecosystem from **reference conditions**. It is calculated as a function of the values for the individual ecosystem indicators:

- Discipline Integrity, is a weighted average of its individual indicators. In some disciplines, indicators
 were weighted slightly differently at different sites. For example, where sandy habitats were less of
 an important feature of the river, these might have been down weighted. In addition, for
 geomorphological integrity, erosion was excluded as it is a driver rather than an outcome.
- The overall Ecosystem integrity is a weighted average of the Discipline Integrity scores (geomorphology, riparian vegetation, macroinvertebrates and fish).

5.2.2 Social-use

River-related social-use indicators included in the scenario assesment are:

- intangible contributions that affect quality of life, either individually or collectively, such as recreational, cultural and spiritual links to a river (**Section 5.2.1**);
- tangible contributions such as access and availability of water for domestic use, fishing, plant harvesting, recession farming, livestock grazing, contribution to tourism and carbon sequestration;
- changes in health risks due to water-borne or water-associated diseases (e.g. bilharzia);
- changes in water treatment costs (e.g. due to algae or pollution).
- overall social well-being as a weighted average of all the individual indicators.

A subset of these indicators is provided in the summary tables (Table 5-5).

Table 5-5: Icons for social use

Recreation, culture value	lcon
Overall social well-being	<u>r</u> řř
Nature tourism value	
Fisheries value	
Plant resource value	
Domestic and livestock watering	
Carbon retention value	С

The social-use icons are reported as percentage increases or decreases in value relative to the PES (2022) using the colours in Table 5-6. The PES (2022) social conditions, population size and household densities are different at different sites, so the results relative to the PES (2022) are not comparable across EWR zones since the population size and household densities differ.

Table 5-6: Definitions of colours used to report change in the social-use icons

Colour	Change relative to PES (2022)
	Marked increase/improvement >+40%)
	Increase/improvement (+20 to +40%)
	Slight increase/improvement (+5 to +20%)
	Little or no change (-5 to +5%)
	Slight decrease/deterioration (-5 to -20%)
	Decrease/deterioration (-20 to -40%)
	Marked decrease/deterioration (<-40%) (a greater than 40% decrease)

6 ECOSYSTEM AND SOCIAL OUTCOMES

6.1 Predicted changes in overall Ecological Integrity

The ecological categories predicted under the three scenarios without improved management are provided in **Table** 6-1.

Table 6-1: The ecological categories predicted under the PES (2022), Future1 and Future2 flow scenarios, without improved management

Future development? Yes / No	EWR site	PES (2022)	Future1	Future2
Yes	1_Lephalala	С	С	C/D
No	2_Rietfontein	B/C	B/C	B/C
No	3_Olifantspruit	С	С	C/D
Yes	4_Mogalakwena1	С	B/C	С
Yes	5_Mogalakwena2	С	С	С
No	6_Kolope	С	С	C/D
Yes	7_Sand	С	B/C	B/C
Yes	8_Nzhelele	С	D	D/E
Yes	9_Nwanedi	С	D	D/E
No	10_Latonyanda	С	С	С
Yes	11_Mutshindudi	С	С	C/D
Yes	12_Luvuvhu	С	С	C/D
Yes	13_Mutale1	С	C/D	D
Yes	14_Mutale2	С	C/D	D

Under the PES (2022), the rivers are in fair to good ecological condition. The ecological category is a C at 13 of the 14 sites, and at 2_Rietfontein it is a B/C category.

Under Future1 (future development, Table 6-1):

- There were no changes predicted to the ecological categories at 2_Rietfontein, 3_Olifantsfontein,
 6_Kolope and 10_Latonyanda because there are no planned water-resource developments modelled for these sites, i.e., PES (2022) and Future1 have identical flow regimes.
- There were no changes predicted to the ecological categories at 1_Lephalala, 5_Mogalakwena2, 11_Mutshindudi and 12_Luvuvhu because the changes in the flow regime were insufficient to illicit an ecological response.
- The ecological category was expected to be higher than PES (2022) at two sites as a result of higher dry and wet season low flows:
 - 4_Mogalakwena1 improved from a C to a B category
 - 7_Sand improved from a C to a B/C category.
- The ecological category was expected to be lower than PES (2022) at four sites as a result of reduced flows:
 - 8_Nzhelele and 9_Nwanedi dropped from a C to a D category
 - 13_Mutale1 and 14_Mutale2 dropped from a C to a C/D category.

Under Future2 (climate change, Table 6-1):

- There were no changes predicted to the ecological categories at 2_Rietfontein, 4_Mogalakwena1, 5_Mogalakwena2, and 10_Latonyanda because the changes in the flow regime were insufficient to illicit an ecological response.
- The ecological category was expected to be higher than PES (2022) at 7_Sand as a result of higher dry and wet season low flows:
 - 7_Sand improved from a C to a B/C category.
- The ecological category was expected to be lower than PES (2022) at nine sites as a result of reduced flows:
 - 1_Lephalala, 3_Olifantspruit, 6_Kolope, 11_Mutshinududi and 12 Luvuvhu dropped from a C to a C/D category
 - 8_Nzhelele and 9_Nwanedi dropped from a C to a D/E category
 - 13_Mutale1 and 14_Mutale2 dropped from a C to a D category.

6.2 Drivers of predicted ecological condition

6.2.1 Future1 scenario (future development)

The discipline specific ecological conditions associated with PES (2022) and Future1 scenarios are presented in **Table** 6-2.

Table	6-2:	PES	(2022)	and	Future1	predicted	discip	line-speci	fic e	ecological	со	nditions	(EC	=
		Ecolo	ogical (Categ	ory, G =	Geomorpl	n <mark>ology</mark> ,	, WQ = W	ater	Quality,	V =	Vegetatio	on, I	=
		Macr	oinvert	ebrat	es, F = Fi	sh)								

			PE	ES					Futu	ure1		
	EC	G	WQ	V	l ⁷	F ⁸	EC	G	WQ	V	1	F
1_Lephalala	С	С	В	С	B/C	D/E	С	С	В	С	B/C	D/E
2_Rietfontein	B/C	С	B/C	A/B	В	A/B	B/C	С	B/C	A/B	В	A/B
3_Olifantspruit	С	С	В	D	B/C	С	С	С	В	D	В	С
4_Mogalakwena1	С	С	С	C/D	С	С	B/C	С	С	В	B/C	А
5_Mogalakwena2	С	D	B/C	С	С	A/B	С	D	B/C	B/C	С	А
6_Kolope	С	D	B/C	С	B/C	D	С	D	B/C	С	B/C	D
7_Sand	С	С	D	С	С	С	B/C	С	D	A/B	A/B	A/B
8_Nzhelele	С	C/D	С	С	С	В	D	D	С	D/E	D	E
9_Nwanedi	С	D	С	С	С	B/C	D	D	С	D	C/D	D/E
10_Latonyanda	С	С	A/B	C/D	B/C	B/C	С	С	A/B	C/D	B/C	B/C
11_Mutshindudi	С	С	B/C	С	С	С	С	С	B/C	C/D	С	C/D
12_Luvuvhu	С	D	В	С	B/C	С	С	D	В	C/D	С	C/D
13_Mutale1	С	С	В	B/C	С	С	C/D	C/D	B/C	C/D	D	D/E
14_Mutale2	С	С	В	В	С	С	C/D	C/D	B/C	C/D	C/D	D

⁷ There were no invertebrate data collected at the non-perennial sites (2_Rietfontein, 6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be invertebrates in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.'

⁸ There were no fish data collected at the non-perennial sites (6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be fish in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.

Sites where the overall ecosystem category did not change relative to PES (2022) under Future1 are not discussed further.

6.2.1.1 Predicted improvements in ecological category

The predicted improvement at 4_Mogalakwena1 (C to a B/C category) is in response to increased dry season flows. These are expected to reduce embeddedness, increase pool depth and inundate more sandy and rocky habitat. The resultant improvement in habitat conditions is expected to lead to increased abundance of riparian plants, invertebrates and fish.

The predicted improvement at 7_Sand (C to a B/C category) is in response to increased abundance of riparian plants, invertebrates and fish in response to higher dry and wet season flows relative to PES (2022).

6.2.1.2 Predicted declines in ecological category

The predicted decline at 8_Nzhelele and 9_Nwanedi (C to a D) is in response to significantly lower flows year round relative to PES (2022). These are expected to increase embeddedness and reduce habitat area and quality for riparian vegetation, invertebrates and fish.

The predicted decline at 13_Mutale1 and 14_Mutale2 (C to a C/D) is also in response to significantly lower flows year round. At these sites, the implications are expected to include increased embeddedness; lower pool depths; smaller backwaters and secondary channels, and; less inundated sandy and rocky habitat. The reduce habitat area and quality are expected to have negative repercussions for riparian vegetation, invertebrates and fish.

6.2.2 Future2 scenario (climate change)

The discipline specific ecological conditions associated with PES (2022) and Future2 scenarios are presented in **Table** 6-3.

Table 6-3: PES (2022) and Future2 predicted discipline-specific ecological conditions (EC = Ecological Category, G = Geomorphology, WQ = Water Quality, V = Vegetation, I = Macroinvertebrates, F = Fish)

			PE	ES					Fut	ure2		
	EC	G	WQ	V	1 9	F ¹⁰	EC	G	WQ	V	I	F
1_Lephalala	С	С	В	С	B/C	D/E	C/D	C/D	В	C/D	С	E
2_Rietfontein	B/C	С	B/C	A/B	В	A/B	B/C	С	B/C	В	В	A/B
3_Olifantspruit	С	С	В	D	B/C	С	C/D	C/D	В	E	B/C	D
4_Mogalakwena1	С	С	С	C/D	С	С	С	С	С	С	С	B/C
5_Mogalakwena2	С	D	B/C	С	С	A/B	С	D	B/C	С	С	B/C
6_Kolope	С	D	B/C	С	B/C	D	C/D	D	B/C	С	B/C	D
7_Sand	С	С	D	С	С	С	B/C	С	D	A/B	A/B	A/B
8_Nzhelele	С	C/D	С	С	С	В	D/E	D	C/D	E/F	D/E	F
9_Nwanedi	С	D	С	С	С	B/C	D/E	D	С	E	D	E/F
10_Latonyanda	С	С	A/B	C/D	B/C	B/C	С	С	A/B	D	С	C/D
11_Mutshindudi	С	С	B/C	С	С	С	C/D	C/D	B/C	C/D	C/D	D
12_Luvuvhu	С	D	В	С	B/C	С	C/D	D	В	D	С	D/E
13_Mutale1	С	С	В	B/C	С	С	D	C/D	B/C	D	D	E
14_Mutale2	С	С	В	В	С	С	D	C/D	B/C	D	C/D	D/E

Sites where the overall ecological category did not change relative to PES (2022) under Future2 are not discussed further.

6.2.2.1 Predicted improvements in ecological category

The predicted improvements at 7_Sand (C to a B/C category) is in response to increased abundance of riparian plants, invertebrates and fish in response to higher dry and wet season flows relative to PES (2022).

6.2.2.2 Predicted decline in ecological category

The predicted declines in ecological category are all in response to a significant reduction in flows all year round relative to PES (2022).

At 1_Lephalala and 3_Olifantspruit (C to a C/D category) this is expected to lead to smaller secondary channels and backwaters and less inundated sand, cobble and riffle habitat. The reductions in area and quality of habitat are expected to have negative repercussions for riparian vegetation and fish.

⁹ There were no invertebrate data collected at the non-perennial sites (2_Rietfontein, 6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be invertebrates in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.

¹⁰ There were no invertebrate data collected at the non-perennial sites (2_Rietfontein, 6_Kolope, 7_Sand) because they were dry. However, to acknowledge that there would be invertebrates in these rivers a PES score for these sites for this discipline was made based on specialist opinion and discussions during the workshop held in July and September 2023. The PES estimates are low confidence.

At 8_Nzhelele and 9_Nwanedi (C to a D/E category) and 11_Mutshindudi and 12_Luvuvhu (C to a C/D category) this is expected to increase embeddedness and reduce habitat area and quality for riparian vegetation, invertebrates and fish.

At 13_Mutale1 and 14_Mutale2 (C to a D category) predicted responses include increased embeddedness; lower pool depths; smaller backwaters and secondary channels, and; less inundated sandy and rocky habitat. The reduced habitat area and quality are expected to have negative repercussions for riparian vegetation, invertebrates and fish.

6.3 Social use and economic value

6.3.1 Future1 scenario

The discipline specific social use and ecosystem value associated with PES (2022) and Future1 scenarios are presented in **Figure** 6-1.

There were no changes predicted to the overall social wellbeing at any of the sites because most predictions were for slight improvements or declines. Sites where no changes in any discipline were predicted relative to PES (2022) under Future1 are not discussed further.

6.3.1.1 Predicted improvements in social use and ecosystem value

The predicted improvements in carbon storage value at 4_Mogalakwena1, 5_Mogalakwena2 and 7_Sand are in response to increased dry season flows that are expected to increase the abundance of riparian vegetation at these sites (**Section 6.2.1.1**). This is expected to improve plant resource value at 5_Mogalakwena2. The increased dry season flows are also expected to improve domestic livestock use at 4_Mogalakwena1.

6.3.1.2 Predicted decline in social use and ecosystem value

The predicted decline in social use and ecosystem value at 8_Nzhelele, 9_Nwanedi, 13_Mutale1 and 14_Mutale2 are all in response to a significant reduction in flows all year round. This is expected to reduce domestic livestock use. The predicted reduction in abundance of fish (**Section 6.2.1.2**) is expected to reduce the fisheries value and the predicted reduction in abundance of riparian vegetation to reduce carbon retention value and plant resource value.

6.3.2 Future2 scenario

The discipline specific social use and ecosystem value associated with PES (2022) and Future2 scenarios are presented in **Figure** 6-1.

There were no changes predicted to the overall social wellbeing at any of the sites because most predictions were for slight improvements or declines. Sites where no changes in any discipline were predicted relative to PES (2022) under Future2 are not discussed further.

			% Chan	ge: Base						% Chan	ge: Fut1				% Change: Fut2					
	Social well-	Fisheries	Plant resource	Domestic, livestock	Nature tourism	Carbon retention		Social well-	Fisheries	Plant resource	Domestic, livestock	Nature tourism	Carbon retention		Social well-	Fisheries	Plant resource	Domestic, livestock	Nature tourism	Carbon retention
	being	value	value	use	value	value		being	value	value	use	value	value		being	value	value	use	value	value
1_Leph	Î	Ťγ		n	\bullet	С	1_Leph		Ŵγ			\bullet	С	1_Leph	Î			1	$\begin{tabular}{ c c c c c } \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \hline \bullet \\ \hline \hline \hline \hline$	С
2_NoNa					•	С	2_NoNa					0	С	2_NoNa					\bullet	С
3_Olif	î	Ŷ			$\mathbf{\overline{\bullet}}$	С	3_Olif	ĥĥ	Ŷ		n h	$\mathbf{\overline{\bullet}}$	С	3_Olif		ΰQ		~	$\mathbf{\overline{O}}$	С
4_Moga	Å ÅÅ	Ŷ			Ō	С	4_Moga		Ŷ		m	$\mathbf{\overline{\bullet}}$	С	4_Moga	î	- SQ			•	С
5_Moga	î	Ŷ	1		•	С	5_Moga	î	Ϋ́	1	m	$\mathbf{\overline{\bullet}}$	С	5_Moga	î	- SQ	đ		•	С
6_Kolo	î				•	С	6_Kolo					•	С	6_Kolo	î				\bullet	С
7_Sand	î	Ŷ			•	С	7_Sand	î	Ŷ			•	С	7_Sand	î	Ŵ			\bullet	С
8_Nzhe	î	Ň			\bullet	С	8_Nzhe	î		1	~^	\bullet	С	8_Nzhe	ĥĥ		ġ	m	\bullet	С
9_Nwan	î	Ň			Ō	С	9_Nwan	î		1	~^	Ō	С	9_Nwan	î		4	~^		С
10_Lato	î	Ť.	đ		Ō	С	10_Lato		Ň			Ō	С	10_Lato	ĥĥ	Ň	đ			С
11_Muts	Î	Ŷ	-		•	С	11_Muts	ĥĥ	Ŷ			•	С	11_Mut			đ			С
12_Luvu	Î	Ŷ			$\mathbf{\overline{O}}$	С	12_Luvu		Ŵ			$\mathbf{\overline{o}}$	С	12_Luvu	ĥĥ		1			С
13_Muta		Ŷ			$\mathbf{\overline{o}}$	С	13_Muta	M	-	1	~	$\mathbf{\overline{o}}$	С	13_Mut	•		1	~	\bullet	С
14_Muta		Ň	1		•	С	14_Muta			1	~	•	С	14_Mut			(~	$\overline{\bullet}$	С

Figure 6-1 PES (2022), Future1 and Future2: Social use and ecosystem value predictions

6.3.2.1 Predicted improvements in social use and ecosystem value

The predicted improvements in carbon storage value at 4_Mogalakwena1, 5_Mogalakwena2 and 7_Sand are in response to increased dry season flows that are expected to increase the abundance of riparian vegetation at these sites (**Section 6.2.1.1**). The increased dry season flows are also expected to improve domestic livestock use at 4_Mogalakwena1.

6.3.2.2 Predicted decline in social use and ecosystem value

The predicted declines in social use and ecosystem value are all in response to a significant reduction in flows all year round relative to PES (2022).

Most of the declines predicted at 8_Nzhelele, 9_Nwanedi, 13_Mutale1 and 14_Mutale2 are the same as Future 1. The three exceptions are more severe declines in plant resource value and domestic livestock value at 8_Nzhelele and carbon retention value at 14_Mutale2.

Further declines are predicted in:

- domestic livestock value and at 3_Olifantspruit
- carbon retention value at 3_Olifantspruit and 12_Luvuvhu and plant resource value at 12_Luvuvhu in response to the predicted decline in the abundance of riparian vegetation (**Section 6.2.2.2**), and
- fisheries value at 11_Mutshindudi in response to the predicted decline in the abundance of fish (Section 6.2.2.2).

7 ECOLOGICAL WATER REQUIREMENTS

The outcomes of the scenario analyses (**Table** 7-1) were used to guide the options for EWRs.

Future development	EWR site	PES	EIS	REC	Future1	Future2	Synth Scena	etic ario	Management actions* recommended?
Yes / No	es / No				Outcome of scenario flow regime				Yes / No
	2_Rietfontein	B/C	Mod	B/C	B/C	B/C			No
No	3_Olifantspruit	С	Mod	B/C	C	C/D			Yes
INO	6_Kolope	С	Mod	B/C	С	C/D			Yes
	10_Latonyanda	С	Mod	С	С	С			No
	1_Lephalala	С	Mod	B/C	C	C/D			Yes
	4_Mogalakwena1	С	Mod	С	B/C	B/C			No
	5_Mogalakwena2	С	Mod	С	C	С			No
	7_Sand	С	Mod	С	B/C	B/C			No
Voo	11_Mutshindudi	С	Mod	С	С	C/D			Yes
Tes	12_Luvuvhu	С	Mod	B/C	С	C/D			Yes
	8_Nzhelele	С	Mod	С	D	D/E	SS1	C/D	No
	9_Nwanedi	С	Mod	С	D	D/E	SS1	C/D	No
Ľ	13_Mutale1	С	Mod	С	C/D	D	SS2	С	No
	14_Mutale2	С	Mod	С	C/D	D	SS1	С	No

Table 7-1 RECs and outcomes under PES (2022), Future1, Future2 and Synthetic Scenarios

Where no developments were planned under the Future1 scenario (four sites), and there were no regulating structures upstream to regulate river flow (i.e. Future1 scenario's flow regime is the same as the PES (2022) scenario), PES (2022) flows are given as EWRs so that, all other factors remaining the same, PES (2022) conditions would be maintained under the Future1 scenario. The flows are predicted to:

- maintain a PES (2022) B/C category at 2_Rietfontein (Section 7.2.2).
- maintain the PES (2022) C category at 3_Olifantspruit (Section 7.2.4) and 6_Kolope (Section 7.2.6) and with suggested non-flow related mitigations improve to the REC of a B/C (see Section 2.2.2).
- maintain a PES (2022) C category at 10_Latonyanda (Section 7.2.10).

For six sites where developments are planned under the Future1 scenario and the expected Ecological Status was the same as PES (2022) or better, the PES (2022) and Future1 scenario flows are both provided as EWRs, the former for use prior to development and the latter for use once the developments are in place. These flows are predicted to:

- maintain a C category at 1_Lephalala prior to and after development (Section 7.2.1) and with suggested non-flow related mitigations (see Section 2.2.2) improve to the REC of a B/C category.
- maintain a C category at 4_Mogalakwena1 (Section 7.2.4) and 7_Sand (Section 7.2.7) prior to development, and improve to a B category at 4_Mogalakwena1 and a B/C at 7_Sand after development.
- maintain a C category at 5_Mogalakwena2 (Section 7.2.5).
- maintain a C category at 11_Mutshindudi (Section 7.2.11) prior to and after development along with the suggested non-flow related mitigations (see Section 2.2.2).

• maintain a C category at 12_Luvuvhu (Section 7.2.12) prior to and after development, and with suggested non-flow related mitigations improve to the REC of a B/C (see Section 2.2.2).

Where developments are planned under the Future1 scenario and the expected Ecological Status under Future1 was poorer than PES (2022), the PES (2022) and Future1 flows are both provided as EWRs, the former for use prior to development and the latter as *an option* for use once the developments are in place. These flows are predicted to:

- maintain a C category at 8_Nzhelele (Section 7.2.8) and 9_Nwanedi (Section 7.2.9) prior to development and result in a D category after development.
- maintain a C category at 13_Mutale1 (Section 7.2.13) and 14_Mutale2 (Section 7.2.14) prior to development and result in a C/D category after development.

7.1 Synthetic scenarios

Since the expected Ecological Status under Future1 at 8_Nzhelele, 9_Nwanedi, 13_Mutale1 and 14_Mutale2 was close to, or at, the lower limit acceptable for sustainability (a D category), Synthetic Scenarios (SS) were created to explore other options that allow for development with less severe consequences for the overall Ecological Status of the rivers. These are described in **Section 7.1**.

Three scenarios were developed, progressively increasing the low flows with restrictions (e.g. if the resulting flows were higher than PES (2022) then Future1 flows were retained (**Figure 7**-1).

Figure 7-1 Flow duration curve for PES (2022), Future1 and Synthetic Scenarios 1, 2 and 3

The three Synthetic Scenarios were developed using the following rules:

- Synthetic Scenario 1 (Synth1): low flows lower than the 30th percentile of Future1 were restored to PES (2022). No changes were made to floods.
- Synthetic Scenario 2 (Synth2): low flows lower than the 40th percentile of Future1 were restored to PES (2022). No changes were made to floods.
- Synthetic Scenario 3 (Synth3): low flows lower than the 50th percentile of Future1 were restored to PES (2022). No changes were made to floods.

Synth1 is the driest scenario and Synth2 and Synth3 are steadily wetter. The Synthetic Scenarios explored scenarios by *increasing low flows (mostly) in the dry season* to see whether the expected Ecological Status could be improved. The increases were unrelated to the planned developments.

All three scenarios increased the Ecological Status expected under the Future1 flow scenario of the Nzhelele and Nwanedi Rivers from a D to C/D category (**Figure** 7-2). Increases higher than those of Synth1 (i.e. Synth2 and Synth3) did not improve the overall Ecological Status above that of Synth1. Increases higher than Synth1 are probably also unrealistic given planned developments. The driest of the three (SS1) was therefore selected as an alternate option for the EWR that has slightly more flow than Future1 and results in an improvement overall to a C/D category.

Figure 7-2 Changes predicted in Ecological Status at 8_Nzhelele (L) and 9_Nwanedi (R)

For 13_Mutale1 the increased flows under Synth1 were insufficient, but those of Synth2 improved the overall condition from a C/D to a C category and was selected as an alternate option for the EWRs having slightly more flow than Future1 (**Figure** 7-3).

Figure 7-3 Changes predicted in Ecological Status at 13_Mutale1 (L) and 14_Mutale2 (R)

The improvement in low flows at 4_Mogalakwena1, 5_Mogalakwena2, 8_Nzhelele and 9_Nwanedi of Synthetic Scenario 1 or 2 over Future1 are shown relative to the PES (2022) scenario in **Figure** 7-4.

Figure 7-4 Average monthly <u>low</u> flows for PES (2022), Future1 and Synthetic Scenarios 1 or 2

7.2 EWR summary tables

Sections 7.2.1 to 7.2.14 are the standard DWS EWR summary tables for each of the 14 study sites, which comprise:

- Basic statistics for the naturalised (Reference) flows, viz:
 - Naturalised Mean Annual Runoff (nMAR)
- The EWR and its components for maintenance of the Ecological Category as volumes and percentages of naturalized, viz.:
 - Maintenance low flows
 - Drought low flows
 - Maintenance high flows, which are floods that occur at least once a year, *viz*.: within-year flood events
- Total monthly volume (maintenance low flows and high flows)
- Magnitude, duration and timing of within-year floods.

7.2.1 1_Lephalala

The REC is a **B/C** category, which is one half category higher than PES (2022) and will require improved management to achieve the higher category (**Section 2.2.3**).

EWR tables are provided for maintenance of:

- PES (2022) = C (Table 7-2), prior to development, with improved management = B/C
- Future1 = C (**Table** 7-3), after development, with improved management = B/C.

Table 7-2 EWRs to maintain a C category at 1_Lephalala (PES 2022 flow scenario)

nMAR	66.22	MCM					
S.Dev.	3.462						
CV	0.052						
Q75	0.2025						
Ecological Category	С						
	MCM	% nMAR					
Total EWR	45.696	69.009					
Maint. Lowflows	37.824	57.121	Evoludoo flood	o with roturn poriod 21	·2 vooro		
Drought Lowflows	16.663	25.164	Excludes 11000	s with return period ≥ i	.z years.		
Maint. Highflows	7.872	11.887					
Monthly Distributions (MC	CM)						
	Notural	Natural	Modified	I Flows (EWR)			
	Inatural	Low	flows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	0.994	0.419	0.325	0.050	0.469		
Nov	2.032	0.775	0.509	0.277	1.052		
Dec	4.813	1.833	1.073	0.970	2.804		
Jan	8.536	3.380	1.741	1.550	4.930		
Feb	12.814	6.007	2.530	1.356	7.362		
Mar	12.445	7.550	2.987	1.410	8.960		
Apr	8.808	6.342	2.372	1.208	7.550		
Мау	5.981	4.807	1.823	0.604	5.411		
Jun	4.291	3.314	1.364	0.295	3.609		
Jul	2.848	2.000	0.974	0.117	2.117		
Aug	1.628	0.905	0.584	0.010	0.915		
Sep	1.027	0.492	0.381	0.023	0.516		
Total	66.22	37.82	16.66	7.87	45.70		

Within year floods (excludes floods v	with a return peri	iod of ≥1:2 years)		
Flood can occur in the month before	or after the mor	nth indicated		
Flood Class	Class1	Class2	Class3	Class4
Ave peak discharge (m ³ /s)	1.00	1.80	3.50	6.20
Ave duration (days)	4	6	8	11
Number	2	3	3	2
Oct				
Nov				
Dec	1			
Jan	1	1		
Feb		1	1	
Mar				1
Apr				1
Мау		1	1	
Jun			1	
Jul				
Aug				
Sep				
Vol (10 ⁶ m ³)	0.51	2.04	4.34	6.29
% PES (2022) MAR	0.93	3.72	7.91	11.48

Table 7-3 EWRs to maintain a C category at 1_Lephalala (Future1 flow scenario)

nMAR	66.217	MCM					
S.Dev.	3.462						
CV	0.052						
Q75	0.2025						
Ecological Category	С						
	MCM	% nMAR					
Total EWR	43.557	65.779					
Maint. Lowflows	35.825	54.102	Evoludoo flood	a with raturn pariod >1.	2 1/2 2 72		
Drought Lowflows	16.663	25.164					
Maint. Highflows	7.733	11.678					
Monthly Distributions (MC	CM)						
	Notural		Modified Flows (EWR)				
	Indiural	Low	flows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Month Oct	Mean 0.994	Maint. 0.420	Drought 0.325	Maint. 0.050	Maint. 0.470		
Month Oct Nov	Mean 0.994 2.032	Maint. 0.420 0.749	Drought 0.325 0.509	Maint. 0.050 0.272	Maint. 0.470 1.021		
Month Oct Nov Dec	Mean 0.994 2.032 4.813	Maint. 0.420 0.749 1.723	Drought 0.325 0.509 1.073	Maint. 0.050 0.272 0.924	Maint. 0.470 1.021 2.646		
Month Oct Nov Dec Jan	Mean 0.994 2.032 4.813 8.536	Maint. 0.420 0.749 1.723 3.142	Drought 0.325 0.509 1.073 1.741	Maint. 0.050 0.272 0.924 1.524	Maint. 0.470 1.021 2.646 4.666		
Month Oct Nov Dec Jan Feb	Mean 0.994 2.032 4.813 8.536 12.814	Maint. 0.420 0.749 1.723 3.142 5.659	Drought 0.325 0.509 1.073 1.741 2.530	Maint. 0.050 0.272 0.924 1.524 1.377	Maint. 0.470 1.021 2.646 4.666 7.036		
Month Oct Nov Dec Jan Feb Mar	Mean 0.994 2.032 4.813 8.536 12.814 12.445	Maint. 0.420 0.749 1.723 3.142 5.659 7.186	Drought 0.325 0.509 1.073 1.741 2.530 2.987	Maint. 0.050 0.272 0.924 1.524 1.377 1.417	Maint. 0.470 1.021 2.646 4.666 7.036 8.604		
Month Oct Nov Dec Jan Feb Mar Apr	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171		
Month Oct Nov Dec Jan Feb Mar Apr May	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808 5.981	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018 4.565	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372 1.823	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154 0.583	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171 5.147		
Month Oct Nov Dec Jan Feb Mar Apr May Jun	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808 5.981 4.291	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018 4.565 3.132	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372 1.823 1.364	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154 0.583 0.295	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171 5.147 3.427		
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jun	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808 5.981 4.291 2.848	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018 4.565 3.132 1.869	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372 1.823 1.364 0.974	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154 0.583 0.295 0.106	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171 5.147 3.427 1.975		
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jun Jul Aug	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808 5.981 4.291 2.848 1.628	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018 4.565 3.132 1.869 0.870	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372 1.823 1.364 0.974 0.584	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154 0.583 0.295 0.106 0.009	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171 5.147 3.427 1.975 0.879		
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	Mean 0.994 2.032 4.813 8.536 12.814 12.445 8.808 5.981 4.291 2.848 1.628 1.027	Maint. 0.420 0.749 1.723 3.142 5.659 7.186 6.018 4.565 3.132 1.869 0.870 0.491	Drought 0.325 0.509 1.073 1.741 2.530 2.987 2.372 1.823 1.364 0.974 0.584 0.381	Maint. 0.050 0.272 0.924 1.524 1.377 1.417 1.154 0.583 0.295 0.106 0.009 0.023	Maint. 0.470 1.021 2.646 4.666 7.036 8.604 7.171 5.147 3.427 1.975 0.879 0.514		

Within year floods (excludes floods	with a return perio	od of ≥1:2 years)		
Flood can occur in the month before	e or after the mon	th indicated		
Flood Class	Class1	Class2	Class3	Class4
Ave peak discharge (m ³ /s)	1.00	1.80	3.50	6.20
Ave duration (days)	4	6	8	10
Number	3	3	3	2
Oct	1			
Nov	1			
Dec	1	1		
Jan			1	
Feb				1
Mar			1	1
Apr		1	1	
Мау		1		
Jun				
Jul				
Aug				
Sep				
Vol (10 ⁶ m ³)	0.77	2.04	4.34	6.29
% PES (2022) MAR	1.40	3.72	7.91	11.48

7.2.2 2_Rietfontein

The REC is a **B/C** category, which is the same as PES (2022). There are no developments planned.

An EWR table is provided for maintenance of:

• PES (2022) = B/C (**Table** 7-4).

Table 7-4 EWRs to maintain a B/C category at 2_Rietfontein (PES 2022 flow scenario)

nMAR	0.181	MCM	7
S.Dev.	0.020	L	1
CV	0.109		7
Q75	0		
Ecological Category	B/C		
	MCM	% nMAR	
Total EWR	0.067	36.961	
Maint. Lowflows	0.057	31.650	Evolution floods with return pariod \$1:2 years
Drought Lowflows	0.030	16.576	Excludes noods with return period 21.2 years.
Maint. Highflows	0.010	5.311	
Monthly Distributions (M			

	Notural	Modified Flows (EWR)				
	Natural	Lowf	lows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	0.000	0.000	0.000	0.000	0.000	
Nov	0.004	0.001	0.001	0.000	0.001	
Dec	0.014	0.004	0.002	0.002	0.006	
Jan	0.042	0.011	0.007	0.002	0.013	
Feb	0.074	0.019	0.010	0.003	0.022	
Mar	0.037	0.019	0.008	0.002	0.021	
Apr	0.009	0.002	0.001	0.000	0.002	
May	0.001	0.001	0.000	0.000	0.001	
Jun	0.000	0.000	0.000	0.000	0.000	
Jul	0.000	0.000	0.000	0.000	0.000	
Aug	0.000	0.000	0.000	0.000	0.000	
Sep	0.000	0.000	0.000	0.000	0.000	
Total	0.18	0.06	0.03	0.01	0.07	

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1 or 2	Class3	Class4			
Ave peak discharge (m ³ /s)	0.10	0.10	0.10			
Ave duration (days)	5	8	9			
Number	1	1	1			
Oct						
Nov						
Dec	1					
Jan		1				
Feb			1			
Mar						
Apr						
Мау						
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.002	0.008	0.013			
% PES (2022) MAR	1.136	5.682	9.092			

7.2.3 3_Olifantspruit

The REC is a **B/C** category, which is one half category higher than PES (2022) and will require improved management to achieve the higher category (**Section 2.2.3**). There are no developments planned.

An EWR table is provided for maintenance of:

• PES (2022) = C (**Table** 7-5), with improved management = B/C.

Table 7-5 EWRs to maintain a C category at 3_Olifantspruit (PES 2022 flow scenario)

			-
nMAR	7.815	MCM	
S.Dev.	0.784		
CV	0.100		
Q75	0.0111		
Ecological Category	С		
	MCM	% nMAR	
Total EWR	6.002	76.792	
Maint. Lowflows	3.385	43.318	Evoludoo fl
Drought Lowflows	1.513	19.354	Excludes In
Maint. Highflows	2.616	33.474]

Excludes floods with return period ≥1:2	years.
---	--------

Monthly Distributions (MCM)						
	Netural	Modified Flows (EWR)				
	naturai	Lowf	lows	HighFlows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	0.147	0.089	0.059	0.012	0.101	
Nov	0.605	0.259	0.130	0.215	0.475	
Dec	1.171	0.399	0.194	0.485	0.884	
Jan	1.407	0.494	0.222	0.570	1.064	
Feb	1.641	0.578	0.235	0.588	1.166	
Mar	1.355	0.549	0.219	0.475	1.024	
Apr	0.686	0.392	0.158	0.237	0.629	
May	0.297	0.229	0.096	0.032	0.261	
Jun	0.154	0.132	0.058	0.001	0.133	
Jul	0.125	0.103	0.049	0.001	0.103	
Aug	0.116	0.087	0.046	0.000	0.087	
Sep	0.111	0.075	0.048	0.000	0.075	
Total	7.82	3.39	1.51	2.62	6.00	

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	0.60	0.90	1.70	3.40		
Ave duration (days)	3	4	7	8		
Number	2	2	1	1		
Oct						
Nov	1					
Dec		1				
Jan			1			
Feb				1		
Mar		1				
Apr	1					
Мау						
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.142	0.339	0.485	0.916		
% PES (2022) MAR	1.943	4.629	6.616	12.501		

7.2.4 4_Mogalakwena1

The REC is a C category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-6), prior to development
- Future1 = B/C (**Table** 7-7), after development.

Table 7-6 EWRs to maintain a C category at 4_Mogalakwena1 (PES 2022 flow scenario)

nMAR	130.390	MCM]		
S.Dev.	13.312				
CV	0.102				
Q75	0.1884				
Ecological Category	С				
	MCM	% nMAR			
Total EWR	32.488	24.916			
Maint. Lowflows	26.120	20.032	Evoludoo flooda	with raturn pariod >	
Drought Lowflows	20.943	16.062	Excludes libbas	s with return period ≥	i.z years.
Maint. Highflows	6.368	4.884			
Monthly Distributions (MC	CM)				
	Notural	Modified Flows (EWR)			
	Inatura	Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	2.813	0.273	0.663	0.154	0.427
Nov	9.298	0.999	1.134	0.409	1.408
Dec	15.403	2.503	2.170	1.007	3.510
Jan	24.935	4.283	3.116	1.135	5.419
Feb	35.499	6.628	3.828	1.019	7.647
Mar	15.991	5.248	3.061	0.992	6.240
Apr	8.245	1.928	1.612	0.697	2.625
Мау	5.017	1.337	1.308	0.334	1.671
Jun	3.793	0.935	1.079	0.198	1.133
Jul	3.486	0.868	1.113	0.157	1.024
Aug	3.126	0.659	0.970	0.135	0.794
Sep	2.784	0.458	0.890	0.132	0.590
Total	2.813	0.273	0.663	0.154	0.427

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	1.30	2.50	4.60	9.20		
Ave duration (days)	5	5	6	7		
Number	2	2	2	1		
Oct						
Nov	1					
Dec		1				
Jan			1			
Feb				1		
Mar			1			
Apr		1				
May	1					
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.688	1.232	2.427	2.488		
% PES (2022) MAR	0.921	1.649	3.248	3.329		

Table 7-7 EWRs to maintain a B/C category at 4_Mogalakwena1 (Future1 flow scenario)

nMAR	130.390	MCM			
S.Dev.	13.312				
CV	0.102				
Q75	0.1884				
Ecological Category	B/C				
	MCM	% nMAR			
Total EWR	37.792	28.984			
Maint. Lowflows	29.828	22.876	Evoludoo floodo	with roturn pariod >	1.2 vooro
Drought Lowflows	20.943	16.062	Excludes libbus	s with return period ≥	1.2 years.
Maint. Highflows	7.965	6.108			
Monthly Distributions (MC	CM)				
	Notural	Modified Flows (EWR)			
	Inatural	Lowflows		Highflows	Total EWR
		=•		i ligilite ite	
Month	Mean	Maint.	Drought	Maint.	Maint.
Month Oct	Mean 2.813	Maint. 0.667	Drought 0.663	Maint. 0.349	Maint. 0.990
Month Oct Nov	Mean 2.813 9.298	Maint. 0.667 1.201	Drought 0.663 1.134	Maint. 0.349 2.596	Maint. 0.990 1.841
Month Oct Nov Dec	Mean 2.813 9.298 15.403	Maint. 0.667 1.201 2.564	Drought 0.663 1.134 2.170	Maint. 0.349 2.596 5.373	Maint. 0.990 1.841 3.675
Month Oct Nov Dec Jan	Mean 2.813 9.298 15.403 24.935	Maint. 0.667 1.201 2.564 4.342	Drought 0.663 1.134 2.170 3.116	Maint. 0.349 2.596 5.373 9.660	Maint. 0.990 1.841 3.675 5.683
Month Oct Nov Dec Jan Feb	Mean 2.813 9.298 15.403 24.935 35.499	Maint. 0.667 1.201 2.564 4.342 6.667	Drought 0.663 1.134 2.170 3.116 3.828	Maint. 0.349 2.596 5.373 9.660 20.127	Maint. 0.990 1.841 3.675 5.683 7.802
Month Oct Nov Dec Jan Feb Mar	Mean 2.813 9.298 15.403 24.935 35.499 15.991	Maint. 0.667 1.201 2.564 4.342 6.667 5.389	Drought 0.663 1.134 2.170 3.116 3.828 3.061	Maint. 0.349 2.596 5.373 9.660 20.127 5.421	Maint. 0.990 1.841 3.675 5.683 7.802 6.498
Month Oct Nov Dec Jan Feb Mar Apr	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115
Month Oct Nov Dec Jan Feb Mar Apr May	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245 5.017	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296 1.792	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612 1.308	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407 0.685	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115 2.255
Month Oct Nov Dec Jan Feb Mar Apr May Jun	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245 5.017 3.793	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296 1.792 1.405	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612 1.308 1.079	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407 0.685 0.361	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115 2.255 1.739
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jun	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245 5.017 3.793 3.486	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296 1.792 1.405 1.373	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612 1.308 1.079 1.113	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407 0.685 0.361 0.279	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115 2.255 1.739 1.623
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jun Jul Aug	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245 5.017 3.793 3.486 3.126	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296 1.792 1.405 1.373 1.164	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612 1.308 1.079 1.113 0.970	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407 0.685 0.361 0.279 0.234	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115 2.255 1.739 1.623 1.374
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	Mean 2.813 9.298 15.403 24.935 35.499 15.991 8.245 5.017 3.793 3.486 3.126 2.784	Maint. 0.667 1.201 2.564 4.342 6.667 5.389 2.296 1.792 1.405 1.373 1.164 0.967	Drought 0.663 1.134 2.170 3.116 3.828 3.061 1.612 1.308 1.079 1.113 0.970 0.890	Maint. 0.349 2.596 5.373 9.660 20.127 5.421 2.407 0.685 0.361 0.279 0.234 0.243	Maint. 0.990 1.841 3.675 5.683 7.802 6.498 3.115 2.255 1.739 1.623 1.374 1.199

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	1.30	2.50	4.60	9.20		
Ave duration (days)	4	6	6	6		
Number	4	3	3	1		
Oct						
Nov	1					
Dec	1	1				
Jan	1		1			
Feb				1		
Mar		1	1			
Apr		1				
May	1					
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	1.376	1.848	2.427	2.488		
% PES (2022) MAR	1.841	2.473	3.248	3.329		

7.2.5 5_Mogalakwena2

The REC is a \boldsymbol{C} category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (Table 7-8), prior to development
- Future1 = C (**Table** 7-9), after development.

Table 7-8 EWRs to maintain a C category at 5_Mogalakwena (PES 2022 flow scenario)

nMAR	188.946	MCM]			
S.Dev.	15.804					
CV	0.084					
Q75	0.2848					
Ecological Category	С					
	MCM	% nMAR				
Total EWR	43.439	22.990				
Maint. Lowflows	39.096	20.692	Evoludoo flooda	with raturn pariod >		
Drought Lowflows	26.707	14.135	Excludes lloods	s with return period ≥	iz years.	
Maint. Highflows	4.343	2.299				
Monthly Distributions (MCM)						
	Modified Flows (EWR)					
	Naturai	Low	flows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	3.417	0.487	0.741	0.107	0.594	
Nov	13.305	2.120	1.020	0.135	2.255	
Dec	18.652	2.557	1.951	0.313	2.870	
Jan	31.569	3.906	3.485	0.758	4.663	
Feb	52.951	10.470	4.785	0.495	10.965	
Mar	26.374	9.273	4.619	0.606	9.879	
Apr	15.229	4.486	2.522	0.658	5.143	
Мау	8.955	2.496	2.082	0.629	3.125	
Jun	5.898	1.351	1.632	0.367	1.717	
Jul	4.964	1.104	1.552	0.183	1.287	
Aug	4.168	0.546	1.266	0.057	0.603	
Sep	3.464	0.300	1.054	0.038	0.338	
Total	188.95	39.10	26.71	4.34	43.44	

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before	or after the mon	th indicated				
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	1.20	2.20	4.00	7.00		
Ave duration (days)	4	5	5	9		
Number	2	2	2	1		
Oct						
Nov						
Dec						
Jan	1					
Feb				1		
Mar			1			
Apr			1			
May	1	1				
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.477	0.538	2.155	2.811		
% PES (2022) MAR	0.431	0.487	1.949	2.542		

Table 7-9 EWRs to maintain a C category at 5_Mogalakwena (Future1 flow scenario)

nMAR	188.946	MCM			
S.Dev.	15.804				
CV	0.084				
Q75	0.2848				
Ecological Category	С				
	MCM	% nMAR			
Total EWR	44.516	23.560			
Maint. Lowflows	39.761	21.043	Excludes floods	with return period $>^{\prime}$	1.2 vears
Drought Lowflows	26.707	14.135			1.2 youro.
Maint. Highflows	4.755	2.517			
Monthly Distributions (MCM)					
	Notural	Modified Flows (EWR)			
	Indiural	Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	3.417	0.575	0.741	0.110	0.685
Nov	13.305	2.014	1.020	0.145	2.160
Dec	18.652	2.355	1.951	0.379	2.734
Jan	31.569	3.891	3.485	0.853	4.744
Feb	52.951	10.445	4.785	0.528	10.973
Mar	26.374	9.252	4.619	0.608	9.860
Apr	15.229	4.604	2.522	0.703	5.308
Мау	8.955	2.676	2.082	0.656	3.332
Jun	5.898	1.553	1.632	0.415	1.968
Jul	4.964	1.309	1.552	0.230	1.539
Aug	4.168	0.704	1.266	0.079	0.783
Sep	3.464	0.383	1.054	0.049	0.432
Total	188.95	39.76	26.71	4.76	44.52

Within year floods (excludes floods v	vith a return perio	od of ≥1:2 years)		
Flood can occur in the month before	or after the mon	th indicated		
Flood Class	Class1	Class2	Class3	Class4
Ave peak discharge (m ³ /s)	1.20	2.20	4.00	7.00
Ave duration (days)	12	7	7	8
Number	2	2	2	1
Oct				
Nov				
Dec				
Jan	1			
Feb				1
Mar			1	
Apr			1	
Мау	1	1		
Jun				
Jul				
Aug				
Sep				
Vol (10 ⁶ m ³)	0.612	1.454	2.294	2.026
% PES (2022) MAR	0.553	1.315	2.075	1.833

7.2.6 6_Kolope

The REC is a **B/C** category, which is one half category higher than PES (2022) and will require improved management to achieve the higher category (**Section 2.2.3**). There are no developments planned.

An EWR table is provided for maintenance of:

• PES (2022) = C (**Table** 7-10), with improved management = B/C.

Table 7-10 EWRs to maintain a C category at 6_Kolope (PES 2022 flow scenario)

nMAR	1.998	MCM			
S.Dev.	0.153				
CV	0.077				
Q75	0.0003				
Ecological Category	С				
	MCM	% nMAR			
Total EWR	0.366	18.314			
Maint. Lowflows	0.349	17.457	Evoludoo flooda	with raturn pariod >	
Drought Lowflows	0.305	15.274	Excludes lloods	s with return period ≥	i.z years.
Maint. Highflows	0.017	0.857			
Monthly Distributions (MCM)					
	Notural	Modified Flows (EWR)			
	Naturai	Low	Lowflows High		Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	0.002	0.000	0.000	0.000	0.000
Nov	0.038	0.001	0.004	0.001	0.002
Dec	0.146	0.008	0.021	0.005	0.013
Jan	0.460	0.038	0.072	0.004	0.042
Feb	0.817	0.141	0.107	0.003	0.144
Mar	0.390	0.143	0.075	0.004	0.147
Apr	0.119	0.015	0.016	0.001	0.016
Мау	0.016	0.002	0.005	0.000	0.002
Jun	0.004	0.000	0.002	0.000	0.000
Jul	0.004	0.000	0.001	0.000	0.000
Aug	0.002	0.000	0.001	0.000	0.000
Sep	0.000	0.000	0.000	0.000	0.000
Total	2.00	0.35	0.31	0.02	0.37

Within year floods (excludes floods with a return period of ≥1:2 years)					
Flood can occur in the month before	or after the mon	th indicated			
Flood Class	Class1	Class2	Class3	Class4	
Ave peak discharge (m ³ /s)	0.010	0.020	0.034	0.055	
Ave duration (days)	6	7	10	10	
Number	1	1	1	1	
Oct					
Nov					
Dec	1				
Jan		1			
Feb			1		
Mar				1	
Apr					
Мау					
Jun					
Jul					
Aug					
Sep					
Vol (10 ⁶ m ³)	0.003	0.007	0.016	0.024	
% PES (2022) MAR	0.265	0.677	1.515	2.297	

7.2.7 7_Sand

The REC is a \boldsymbol{C} category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-11), prior to development
- Future1 = B/C (**Table** 7-12), after development.

Table 7-11 EWRs to maintain a high C category at 7_Sand (PES 2022 flow scenario)

nMAR	23.125	MCM]			
S.Dev.	8.540					
CV	0.369					
Q75	0.0095]			
Ecological Category	С					
	MCM	% nMAR				
Total EWR	5.546	23.981				
Maint. Lowflows	4.125	17.838	Evoludoo flooda			
Drought Lowflows	1.581	6.837	Excludes lloods	s with return period ≥	iz years.	
Maint. Highflows	1.421	6.143				
Monthly Distributions (MCM)						
	Notural		Modified	Flows (EWR)		
	natural	Low	flows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	0.180	0.230	0.059	0.023	0.253	
Nov	0.983	0.212	0.175	0.112	0.324	
Dec	1.554	0.231	0.201	0.226	0.457	
Jan	7.024	0.581	0.361	0.361	0.943	
Feb	11.348	0.669	0.377	0.364	1.033	
Mar	1.078	0.230	0.143	0.173	0.403	
Apr	0.567	0.344	0.110	0.101	0.445	
Мау	0.169	0.315	0.064	0.018	0.333	
Jun	0.087	0.356	0.036	0.004	0.360	
Jul	0.067	0.361	0.028	0.012	0.373	
Aug	0.039	0.317	0.016	0.002	0.319	
Sep	0.031	0.279	0.011	0.023	0.302	
Total	23.13	4.13	1.58	1.42	5.55	

Within year floods (excludes floods v	vith a return peri	od of ≥1:2 years)		
Flood can occur in the month before	or after the mor	nth indicated		
Flood Class	Class1	Class2	Class3	Class4
Ave peak discharge (m ³ /s)	0.80	1.20	2.20	4.10
Ave duration (days)	7	3	3	7
Number	1	1	1	1
Oct				
Nov				
Dec	1			
Jan				1
Feb			1	
Mar		1		
Apr				
May				
Jun				
Jul				
Aug				
Sep				
Vol (10 ⁶ m ³)	0.251	0.151	0.273	0.518
% PES (2022) MAR	1.293	0.776	1.404	2.665

Table 7-12 EWRs to maintain a B/C category at 7_Sand (Future1 flow scenario)

nMAR	23.125	MCM				
S.Dev.	8.540					
CV	0.369					
Q75	0.0095					
Ecological Category	B/C					
	MCM	% nMAR				
Total EWR	28.950	125.188				
Maint. Lowflows	22.276	96.329	Evoludoo floodo	with raturn pariod >	1.2 years	
Drought Lowflows	1.581	6.837	Excludes libbus	s with return period ≥	1.2 years.	
Maint. Highflows	6.674	28.860				
Monthly Distributions (MCM)						
	Notural		Modified Flows (EWR)			
	inatural	Low	flows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	0.180	2.117	0.059	0.300	2.417	
Nov	0.983	1.311	0.175	0.776	2.087	
Dec	1.554	1.112	0.201	0.847	1.959	
Jan	7.024	1.375	0.361	0.745	2.120	
Feb	11.348	1.844	0.377	0.883	2.727	
Mar	1.078	1.430	0.143	0.759	2.189	
Apr	0.567	1.778	0.110	0.671	2.450	
Мау	0.169	2.179	0.064	0.369	2.548	
Jun	0.087	2.300	0.036	0.382	2.682	
1			0.000	0 4 5 4	2 6 4 0	
Jul	0.067	2.186	0.028	0.454	2.040	
Aug	0.067 0.039	2.186 2.352	0.028	0.454	2.640	
Jul Aug Sep	0.067 0.039 0.031	2.186 2.352 2.290	0.028 0.016 0.011	0.454 0.301 0.187	2.653 2.478	

Within year floods (excludes floods with a return period of ≥1:2 years)					
Flood can occur in the month before	or after the mon	th indicated			
Flood Class	Class1	Class2	Class3	Class4	
Ave peak discharge (m ³ /s)	0.80	1.20	2.20	4.10	
Ave duration (days)	4	6	7	6	
Number	1	10	4	2	
Oct		1			
Nov			1		
Dec			1		
Jan	1	1			
Feb		1		1	
Mar		1		1	
Apr		1	1		
May		1	1		
Jun		1			
Jul		1			
Aug		1			
Sep		1			
Vol (10 ⁶ m ³)	0.251	1.507	1.090	1.035	
% PES (2022) MAR	1.293	7.758	5.614	5.331	

7.2.8 8_Nzhelele

The REC is a **C** category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (Table 7-13), prior to development
- Future1 = D (**Table** 7-14), after development
- Synthetic Scenario 1 = C/D (**Table** 7-15), after development.

2.794

2.047

98.42

Table 7-13 EWRs to maintain a C category at 8_Nzhelele (PES 2022 flow scenario)

nMAR	98.420	MCM			
S.Dev.	7.494				
CV	0.076				
Q75	0.2467				
Ecological Category	С				
	MCM	% nMAR	Excludes floods	s with return period ≥	1:2 years.
Total EWR	50.257	51.063			
Maint. Lowflows	41.595	42.263			
Drought Lowflows	22.504	22.865			
Maint. Highflows	8.662	8.801			
Monthly Distributions (MC	CM)				
	Natural	Modified Flows (EWR)			
		Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	1.719	1.212	0.626	0.328	1.539
Nov	2.083	1.023	0.603	0.455	1.478
Dec	4.001	1.252	0.998	0.788	2.039
Jan	14.739	3.229	2.323	1.080	4.309
Feb	25.980	6.116	3.542	1.220	7.336
Mar	18.102	7.159	3.919	1.476	8.635
Apr	10.976	6.174	3.048	1.453	7.627
Мау	6.986	4.635	2.387	0.490	5.124
Jun	5.158	3.641	1.779	0.481	4.122
Jul	3.835	3.012	1.395	0.345	3.358

1.076

0.809

22.50

0.201

0.345

8.66

2.582

2.107

50.26

Within year floods (excludes floods with a return period of ≥1:2 years)							
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	1.00	1.60	3.10	5.80			
Ave duration (days)	9	13	13	14			
Number	5	5	2	1			
Oct	1						
Nov	1						
Dec	1						
Jan		1	1				
Feb		1					
Mar				1			
Apr			1				
Мау		1					
Jun		1					
Jul		1					
Aug	1						
Sep	1						
Vol (10 ⁶ m ³)	2.66	5.05	3.61	3.15			
% PES (2022) MAR	3.50	6.66	4.76	4.15			

2.381

1.762

41.59

Aug

Sep

Total

Table 7-14 EWRs to maintain a D category at 8_Nzhelele (Future1 flow scenario)

nMAR	98.420	MCM			
S.Dev.	7.494				
CV	0.076				
Q75	0.2467				
Ecological Category	D				
	MCM	% nMAR			
Total EWR	29.535	30.010			
Maint. Lowflows	24.584	24.979	Excludes floods	with return period $>^{\prime}$	1.2 vears
Drought Lowflows	22.504	22.865			1.2 youro.
Maint. Highflows	4.951	5.030			
Monthly Distributions (MC	CM)				
	Natural		Modified	Flows (EWR)	
	Naturai	Low	flows	Highflows	Total EWR
Month	Moon	Maint	Drought	Maint	Maint
MONUT	Iviean	Iviali II.	Diougni	Iviairit.	Maint.
Oct	1.719	0.317	0.626	0.106	0.422
Oct Nov	1.719 2.083	0.317 0.222	0.626 0.603	0.106 0.193	0.422 0.415
Oct Nov Dec	1.719 2.083 4.001	0.317 0.222 0.499	0.626 0.603 0.998	0.106 0.193 0.478	0.422 0.415 0.978
Oct Nov Dec Jan	1.719 2.083 4.001 14.739	0.317 0.222 0.499 2.343	0.626 0.603 0.998 2.323	0.106 0.193 0.478 0.755	0.422 0.415 0.978 3.098
Oct Nov Dec Jan Feb	1.719 2.083 4.001 14.739 25.980	0.317 0.222 0.499 2.343 5.049	0.626 0.603 0.998 2.323 3.542	0.106 0.193 0.478 0.755 0.865	0.422 0.415 0.978 3.098 5.914
Oct Nov Dec Jan Feb Mar	1.719 2.083 4.001 14.739 25.980 18.102	0.317 0.222 0.499 2.343 5.049 5.276	0.626 0.603 0.998 2.323 3.542 3.919	0.106 0.193 0.478 0.755 0.865 0.879	0.422 0.415 0.978 3.098 5.914 6.155
Oct Nov Dec Jan Feb Mar Apr	1.719 2.083 4.001 14.739 25.980 18.102 10.976	0.317 0.222 0.499 2.343 5.049 5.276 4.042	0.626 0.603 0.998 2.323 3.542 3.919 3.048	0.106 0.193 0.478 0.755 0.865 0.879 1.050	0.422 0.415 0.978 3.098 5.914 6.155 5.092
Oct Nov Dec Jan Feb Mar Apr May	1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986	0.317 0.222 0.499 2.343 5.049 5.276 4.042 2.470	0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387	0.106 0.193 0.478 0.755 0.865 0.879 1.050 0.245	0.422 0.415 0.978 3.098 5.914 6.155 5.092 2.715
Oct Nov Dec Jan Feb Mar Apr May Jun	1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158	0.317 0.222 0.499 2.343 5.049 5.276 4.042 2.470 1.731	0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779	0.106 0.193 0.478 0.755 0.865 0.879 1.050 0.245 0.177	0.422 0.415 0.978 3.098 5.914 6.155 5.092 2.715 1.908
Oct Nov Dec Jan Feb Mar Apr May Jun Jul	1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835	0.317 0.222 0.499 2.343 5.049 5.276 4.042 2.470 1.731 1.401	0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395	0.106 0.193 0.478 0.755 0.865 0.879 1.050 0.245 0.177 0.122	0.422 0.415 0.978 3.098 5.914 6.155 5.092 2.715 1.908 1.523
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug	1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835 2.794	0.317 0.222 0.499 2.343 5.049 5.276 4.042 2.470 1.731 1.401 0.818	0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395 1.076	0.106 0.193 0.478 0.755 0.865 0.879 1.050 0.245 0.177 0.122 0.040	0.422 0.415 0.978 3.098 5.914 6.155 5.092 2.715 1.908 1.523 0.857
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835 2.794 2.047	0.317 0.222 0.499 2.343 5.049 5.276 4.042 2.470 1.731 1.401 0.818 0.417	0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395 1.076 0.809	0.106 0.193 0.478 0.755 0.865 0.879 1.050 0.245 0.177 0.122 0.040 0.040	0.422 0.415 0.978 3.098 5.914 6.155 5.092 2.715 1.908 1.523 0.857 0.457

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	1.00	1.60	3.10	5.80		
Ave duration (days)	9	13	13	14		
Number	2	2	1	1		
Oct						
Nov						
Dec	1					
Jan	1					
Feb		1				
Mar			1			
Apr				1		
Мау		1				
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	1.06	2.02	1.80	3.15		
% PES (2022) MAR	1.40	2.66	2.38	4.15		

Table 7-15 EWRs to maintain a C/D category at 8_Nzhelele (Synthetic scenario 1)

nMAR	98.420	MCM			
S.Dev.	7.494				
CV	0.076				
Q75	0.2467				
Ecological Category	C/D				
	MCM	% nMAR			
Total EWR	32.383	32.903			
Maint. Lowflows	27.482	27.923	Evoludoo floodo	with raturn pariod >	1.2 vooro
Drought Lowflows	22.504	22.865	Excludes libbus	s with return period ≥	1.2 years.
Maint. Highflows	4.902	4.980			
Monthly Distributions (MCM)					
	Notural		Modified	Flows (EWR)	
	Indiural	Low	wflows Highflows To		Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Month Oct	Mean 1.719	Maint. 0.641	Drought 0.626	Maint. 0.099	Maint. 0.740
Month Oct Nov	Mean 1.719 2.083	Maint. 0.641 0.720	Drought 0.626 0.603	Maint. 0.099 0.190	Maint. 0.740 0.910
Month Oct Nov Dec	Mean 1.719 2.083 4.001	Maint. 0.641 0.720 0.950	Drought 0.626 0.603 0.998	Maint. 0.099 0.190 0.464	Maint. 0.740 0.910 1.414
Month Oct Nov Dec Jan	Mean 1.719 2.083 4.001 14.739	Maint. 0.641 0.720 0.950 2.676	Drought 0.626 0.603 0.998 2.323	Maint. 0.099 0.190 0.464 0.733	Maint. 0.740 0.910 1.414 3.409
Month Oct Nov Dec Jan Feb	Mean 1.719 2.083 4.001 14.739 25.980	Maint. 0.641 0.720 0.950 2.676 5.261	Drought 0.626 0.603 0.998 2.323 3.542	Maint. 0.099 0.190 0.464 0.733 0.860	Maint. 0.740 0.910 1.414 3.409 6.121
Month Oct Nov Dec Jan Feb Mar	Mean 1.719 2.083 4.001 14.739 25.980 18.102	Maint. 0.641 0.720 0.950 2.676 5.261 5.514	Drought 0.626 0.603 0.998 2.323 3.542 3.919	Maint. 0.099 0.190 0.464 0.733 0.860 0.879	Maint. 0.740 0.910 1.414 3.409 6.121 6.393
Month Oct Nov Dec Jan Feb Mar Apr	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224	Drought 0.626 0.603 0.998 2.323 3.542 3.919 3.048	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269
Month Oct Nov Dec Jan Feb Mar Apr May	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224 2.685	Drought 0.626 0.603 2.323 3.542 3.919 3.048 2.387	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045 0.253	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269 2.938
Month Oct Nov Dec Jan Feb Mar Apr May Jun	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224 2.685 1.786	Drought 0.626 0.603 2.323 3.542 3.919 3.048 2.387 1.779	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045 0.253 0.177	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269 2.938 1.962
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jun	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224 2.685 1.786 1.484	Drought 0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045 0.253 0.177 0.122	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269 2.938 1.962 1.606
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835 2.794	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224 2.685 1.786 1.484 0.935	Drought 0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395 1.076	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045 0.253 0.177 0.122 0.040	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269 2.938 1.962 1.606 0.974
Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	Mean 1.719 2.083 4.001 14.739 25.980 18.102 10.976 6.986 5.158 3.835 2.794 2.047	Maint. 0.641 0.720 0.950 2.676 5.261 5.514 4.224 2.685 1.786 1.484 0.935 0.607	Drought 0.626 0.603 0.998 2.323 3.542 3.919 3.048 2.387 1.779 1.395 1.076 0.809	Maint. 0.099 0.190 0.464 0.733 0.860 0.879 1.045 0.253 0.177 0.122 0.040	Maint. 0.740 0.910 1.414 3.409 6.121 6.393 5.269 2.938 1.962 1.606 0.974 0.648

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	1.00	1.60	3.10	5.80		
Ave duration (days)	9	13	13	14		
Number	2	1	1	1		
Oct						
Nov						
Dec						
Jan	1					
Feb		1				
Mar			1			
Apr				1		
Мау	1					
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	1.06	1.01	1.80	3.15		
% PES (2022) MAR	1.40	1.33	2.38	4.15		

7.2.9 9_Nwanedi

The REC is a **C** category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (Table 7-16), prior to development
- Future1 = D (**Table** 7-17), after development
- Synthetic Scenario 1 = C/D (**Table** 7-18), after development.

Table 7-16 EWRs to maintain a C category at 9_Nwanedi (PES 2022)

nMAR	32.578	MCM			
S.Dev.	2.567				
CV	0.079				
Q75	0.067				
Ecological Category	С				
	MCM	% nMAR			
Total EWR	16.292	50.011			
Maint. Lowflows	11.872	36.443	Evoludoo flooda	1.2 years	
Drought Lowflows	6.837	20.988	Excludes libbus	s with return period ≥	1.2 years.
Maint. Highflows	4.420	13.568			
Monthly Distributions (MC	CM)				
	Notural		Modified	Flows (EWR)	
	Indiural	Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	1.154	0.437	0.383	0.195	0.632
Nov	1.573	0.517	0.408	0.314	0.831
Dec	2.832	0.763	0.518	0.513	1.275
Jan	5.632	1.307	0.739	0.829	2,136

Jan	5.052	1.307	0.739	0.029	2.130
Feb	8.012	1.877	0.904	0.998	2.875
Mar	4.674	1.830	0.906	0.866	2.697
Apr	2.455	1.344	0.683	0.468	1.811
Мау	1.706	1.063	0.582	0.117	1.180
Jun	1.343	0.860	0.480	0.043	0.903
Jul	1.157	0.730	0.432	0.024	0.754
Aug	1.061	0.630	0.412	0.017	0.647
Sep	0.979	0.515	0.391	0.036	0.551
Total	32.58	11.87	6.84	4.42	16.29

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	0.60	1.00	1.90	3.70		
Ave duration (days)	9	10	16	16		
Number	3	2	2	1		
Oct						
Nov	1					
Dec		1				
Jan			1			
Feb				1		
Mar		1	1			
Apr	1					
Мау	1					
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.81	0.90	2.29	1.98		
% PES (2022) MAR	3.12	3.47	8.84	7.65		

Table 7-17 EWRs to maintain a D category at 9_Nwanedi (Future1 flow scenario)

nMAR	32.578	MCM			
S.Dev.	2.567				
CV	0.079				
Q75	0.0671				
Ecological Category	D				
	MCM	% nMAR			
Total EWR	11.970	36.742			
Maint. Lowflows	8.517	26.142	Evoludoo floodo	with raturn pariod >	1:2 vooro
Drought Lowflows	6.837	20.988	Excludes libbus	s with return period ≥	1.2 years.
Maint. Highflows	3.453	10.599			
Monthly Distributions (MC	CM)				
	Natural		Modified	Flows (EWR)	
	Inatural	Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	1 154	0 165	0 383	0 15/	0.319
001	1.134	0.105	0.000	0.154	0.010
Nov	1.573	0.103	0.408	0.170	0.397
Nov Dec	1.134 1.573 2.832	0.103	0.408	0.170	0.397
Nov Dec Jan	1.573 2.832 5.632	0.103 0.227 0.309 0.786	0.408 0.518 0.739	0.170 0.242 0.565	0.397 0.551 1.351
Nov Dec Jan Feb	1.573 2.832 5.632 8.012	0.227 0.309 0.786 1.434	0.408 0.518 0.739 0.904	0.170 0.242 0.565 0.868	0.397 0.551 1.351 2.302
Nov Dec Jan Feb Mar	1.573 2.832 5.632 8.012 4.674	0.227 0.309 0.786 1.434 1.558	0.408 0.518 0.739 0.904 0.906	0.170 0.242 0.565 0.868 0.908	0.397 0.551 1.351 2.302 2.466
Nov Dec Jan Feb Mar Apr	1.134 1.573 2.832 5.632 8.012 4.674 2.455	0.103 0.227 0.309 0.786 1.434 1.558 1.121	0.408 0.518 0.739 0.904 0.906 0.683	0.170 0.242 0.565 0.868 0.908 0.411	0.397 0.551 1.351 2.302 2.466 1.532
Nov Dec Jan Feb Mar Apr May	1.134 1.573 2.832 5.632 8.012 4.674 2.455 1.706	0.103 0.227 0.309 0.786 1.434 1.558 1.121 0.871	0.408 0.518 0.739 0.904 0.906 0.683 0.582	0.170 0.242 0.565 0.868 0.908 0.411 0.089	0.397 0.551 1.351 2.302 2.466 1.532 0.960
Nov Dec Jan Feb Mar Apr May Jun	1.154 1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343	0.227 0.309 0.786 1.434 1.558 1.121 0.871 0.673	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480	0.170 0.242 0.565 0.868 0.908 0.411 0.089 0.020	0.397 0.551 1.351 2.302 2.466 1.532 0.960 0.693
Nov Dec Jan Feb Mar Apr May Jun Jul	1.154 1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157	0.103 0.227 0.309 0.786 1.434 1.558 1.121 0.871 0.673 0.548	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432	0.134 0.170 0.242 0.565 0.868 0.908 0.411 0.089 0.020 0.010	0.397 0.551 1.351 2.302 2.466 1.532 0.960 0.693 0.559
Nov Dec Jan Feb Mar Apr May Jun Jul Aug	1.154 1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157 1.061	0.103 0.227 0.309 0.786 1.434 1.558 1.121 0.871 0.673 0.548 0.460	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432 0.412	0.134 0.170 0.242 0.565 0.868 0.908 0.411 0.089 0.020 0.010 0.003	0.397 0.551 1.351 2.302 2.466 1.532 0.960 0.693 0.559 0.463
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1.154 1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157 1.061 0.979	0.103 0.227 0.309 0.786 1.434 1.558 1.121 0.871 0.673 0.548 0.460 0.365	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432 0.412 0.391	0.134 0.170 0.242 0.565 0.868 0.908 0.411 0.089 0.020 0.010 0.003 0.013	0.397 0.551 1.351 2.302 2.466 1.532 0.960 0.693 0.559 0.463 0.378

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	0.60	1.00	1.90	3.70		
Ave duration (days)	11	11	13	17		
Number	1	2	1	1		
Oct						
Nov						
Dec	1					
Jan				1		
Feb			1			
Mar		1				
Apr		1				
Мау						
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.27	0.90	1.14	1.98		
% PES (2022) MAR	1.04	3.47	4.42	7.65		

Table 7-18 EWRs to maintain a C/D category at 9_Nwanedi (Synthetic Scenario 1)

nMAR	32.578	MCM			
S.Dev.	2.567				
CV	0.079				
Q75	0.067				
Ecological Category	C/D				
	MCM	% nMAR			
Total EWR	12.520	38.430			
Maint. Lowflows	9.087	27.894	Evoludoo floodo	with roturn poriod >1	1.2 vooro
Drought Lowflows	6.837	20.988	Excludes 11000s	s with return period ≥	i.z years.
Maint. Highflows	3.432	10.536			
Monthly Distributions (MC	CM)				
	Notural		Modified	Flows (EWR)	
	inatural	Low	flows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	1.154	0.228	0.383	0.154	0.382
Nov	4 570	0.000			
	1.573	0.298	0.408	0.168	0.467
Dec	2.832	0.298	0.408 0.518	0.168 0.242	0.467 0.647
Dec Jan	2.832 5.632	0.298 0.405 0.870	0.408 0.518 0.739	0.168 0.242 0.561	0.467 0.647 1.431
Dec Jan Feb	2.832 5.632 8.012	0.298 0.405 0.870 1.492	0.408 0.518 0.739 0.904	0.168 0.242 0.561 0.863	0.467 0.647 1.431 2.355
Dec Jan Feb Mar	1.573 2.832 5.632 8.012 4.674	0.298 0.405 0.870 1.492 1.617	0.408 0.518 0.739 0.904 0.906	0.168 0.242 0.561 0.863 0.903	0.467 0.647 1.431 2.355 2.520
Dec Jan Feb Mar Apr	1.573 2.832 5.632 8.012 4.674 2.455	0.298 0.405 0.870 1.492 1.617 1.165	0.408 0.518 0.739 0.904 0.906 0.683	0.168 0.242 0.561 0.863 0.903 0.408	0.467 0.647 1.431 2.355 2.520 1.573
Dec Jan Feb Mar Apr May	1.573 2.832 5.632 8.012 4.674 2.455 1.706	0.298 0.405 0.870 1.492 1.617 1.165 0.904	0.408 0.518 0.739 0.904 0.906 0.683 0.582	0.168 0.242 0.561 0.863 0.903 0.408 0.088	0.467 0.647 1.431 2.355 2.520 1.573 0.992
Dec Jan Feb Mar Apr May Jun	1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343	0.298 0.405 0.870 1.492 1.617 1.165 0.904 0.698	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480	0.168 0.242 0.561 0.863 0.903 0.408 0.088 0.020	0.467 0.647 1.431 2.355 2.520 1.573 0.992 0.718
Dec Jan Feb Mar Apr May Jun Jun	1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157	0.298 0.405 0.870 1.492 1.617 1.165 0.904 0.698 0.566	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432	0.168 0.242 0.561 0.863 0.903 0.408 0.088 0.020 0.010	0.467 0.647 1.431 2.355 2.520 1.573 0.992 0.718 0.576
Dec Jan Feb Mar Apr May Jun Jul Aug	1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157 1.061	0.298 0.405 0.870 1.492 1.617 1.165 0.904 0.698 0.566 0.471	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432 0.412	0.168 0.242 0.561 0.863 0.903 0.408 0.088 0.020 0.010 0.003	0.467 0.647 1.431 2.355 2.520 1.573 0.992 0.718 0.576 0.474
Dec Jan Feb Mar Apr May Jun Jul Aug Sep	1.573 2.832 5.632 8.012 4.674 2.455 1.706 1.343 1.157 1.061 0.979	0.298 0.405 0.870 1.492 1.617 1.165 0.904 0.698 0.566 0.471 0.374	0.408 0.518 0.739 0.904 0.906 0.683 0.582 0.480 0.432 0.432 0.412 0.391	0.168 0.242 0.561 0.863 0.903 0.408 0.088 0.020 0.010 0.003 0.013	0.467 0.647 1.431 2.355 2.520 1.573 0.992 0.718 0.576 0.474 0.386

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	0.60	1.00	1.90	3.70		
Ave duration (days)	11	11	13	17		
Number	1	2	1	1		
Oct						
Nov						
Dec	1					
Jan				1		
Feb			1			
Mar		1				
Apr		1				
Мау						
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.27	0.90	1.14	1.98		
% PES (2022) MAR	1.04	3.47	4.42	7.65		

7.2.10 10_Latonyanda

The REC is a C category, which is the same as PES (2022). There are no developments planned.

An EWR table is provided for maintenance of:

• PES (2022) = C (**Table** 7-19).

Table 7-19 EWRs to maintain a C category at 10_Latonyanda (PES 2022 flow scenario)

nMAR	23.206	MCM	
S.Dev.	0.963		
CV	0.042		
Q75	0.064		
Ecological Category	С		
	MCM	% nMAR	
Total EWR	16.785	72.328	
Maint. Lowflows	13.597	58.590	Evoludoo floo
Drought Lowflows	6.986	30.104	Excludes not
Maint. Highflows	3.188	13.738	

Excludes floods with return period ≥1:2 years	
---	--

Monthly Distributions (MCM)							
	Notural	Modified Flows (EWR)					
	Natural	Lowf	lows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	0.543	0.384	0.216	0.035	0.418		
Nov	0.803	0.431	0.269	0.127	0.558		
Dec	1.498	0.690	0.438	0.344	1.034		
Jan	3.286	1.504	0.898	0.722	2.226		
Feb	5.004	2.259	1.229	0.769	3.028		
Mar	4.783	2.645	1.370	0.616	3.261		
Apr	2.980	1.989	0.948	0.444	2.433		
Мау	1.491	1.206	0.536	0.060	1.266		
Jun	0.975	0.862	0.358	0.026	0.887		
Jul	0.739	0.674	0.280	0.017	0.691		
Aug	0.603	0.535	0.237	0.010	0.544		
Sep	0.503	0.419	0.207	0.018	0.438		
Total	23.21	13.60	6.99	3.19	16.78		

Within year floods (excludes floods with a return period of ≥1:2 years)							
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	0.30	0.60	1.10	1.80			
Ave duration (days)	5	6	9	11			
Number	4	4	3	1			
Oct							
Nov	1						
Dec	1	1					
Jan	1	1	1				
Feb				1			
Mar		1	1				
Apr		1	1				
Мау	1						
Jun							
Jul							
Aug							
Sep							
Vol (10 ⁶ m ³)	0.35	0.77	1.37	0.85			
% PES (2022) MAR	1.94	4.30	7.61	4.75			

7.2.11 11_Mutshindudi

The REC is a **C** category, wich is the same as PES (2022) and will require improved management to maintain the PES (Section 2.2.3).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-20), prior to development, with improved management = C.
- Future1 = C (**Table** 7-21), after development, with improved management = C.

Table 7-20 EWRs to maintain a C category at 11_Mutshindudi (PES 2022 flow scenario)

nMAR	56.420	MCM]				
S.Dev.	3.444						
CV	0.061						
Q75	0.135						
Ecological Category	С						
	MCM	% MAR					
Total EWR	40.811	72.335					
Maint. Lowflows	24.108	42.730	- Evaluation floods with return pariod >1,2 years				
Drought Lowflows	11.736	20.802	$-$ Excludes noods with return period \geq 1.2 years.				
Maint. Highflows	16.703	29.605					
Monthly Distributions (MC	CM)	-					
	Natural	Modified Flows (EWR)					
	Naturai	Low	flows	Highhlows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	1.154	0.664	0.421	0.078	0.742		
Nov	2.528	0.967	0.688	0.436	1.403		
Dec	6.135	2.094	1.267	1.827	3.921		
Jan	9.959	3.638	1.847	3.433	7.070		
Feb	13.104	4.140	1.803	4.931	9.071		
Mar	10.550	4.494	1.897	3.825	8.320		
Apr	5.171	2.662	1.178	1.711	4.373		
Мау	2.593	1.633	0.776	0.324	1.958		
Jun	1.707	1.213	0.569	0.082	1.295		
Jul	1.374	1.035	0.491	0.015	1.050		
Aug	1.125	0.853	0.413	0.016	0.870		
Sep	1.020	0.714	0.387	0.025	0.739		
Total	56.42	24.11	11.74	16.70	40.81		

Within year floods (excludes floods with a return period of ≥1:2 years)								
Flood can occur in the month before or after the month indicated								
Flood Class	Class1	Class1 Class2 Class3 Class4						
Ave peak discharge (m ³ /s)	0.80	1.80	3.80	6.90				
Ave duration (days)	7	12	17	18				
Number	5	2	1	1				
Oct								
Nov	1							
Dec		1						
Jan	1	1						
Feb				1				
Mar			1					
Apr	1							
Мау	1							
Jun	1							
Jul								
Aug								
Sep								
Vol (10 ⁶ m ³)	1.65	1.91	2.83	4.05				
% PES (2022) MAR	3.54	4.08	6.07	8.67				

April 2024

Table 7-21 EWRs to maintain a C category at 11_Mutshindudi (Future1 flow scenario)

nMAR	56.420	MCM				
S.Dev.	3.444		-			
CV	0.061		-			
Q75	0.135		-			
Ecological Category	С					
	MCM	% MAR				
Total EWR	33.091	58.650				
Maint. Lowflows	20.591	36.495	Evolution floods with roturn poriod >1:2 years			
Drought Lowflows	11.736	20.802	Excludes libras with return period 21.2 years.			
Maint. Highflows	12.500	22.155				
Monthly Distributions (MC	CM)					
	Natural	Modified Flows (EWR)				
	Inatural	Low	flows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	1.154	0.666	0.421	0.033	0.700	
Nov	2.528	0.873	0.688	0.317	1.190	
Dec	6.135	1.596	1.267	1.144	2.741	
Jan	9.959	2.597	1.847	2.327	4.923	
Feb	13.104	3.186	1.803	3.766	6.952	
Mar	10.550	3.820	1.897	3.291	7.111	
Apr	5.171	2.393	1.178	1.308	3.701	
Мау	2.593	1.598	0.776	0.252	1.850	
Jun	1.707	1.241	0.569	0.037	1.278	
Jul	1.374	1.043	0.491	0.005	1.048	
Aug	1.125	0.858	0.413	0.007	0.864	
Sep	1.020	0.719	0.387	0.014	0.733	
Total	56.42	20.59	11.74	12.50	33.09	

Within year floods (excludes floods with a return period of ≥1:2 years)						
Flood can occur in the month before or after the month indicated						
Flood Class	Class1	Class2	Class3	Class4		
Ave peak discharge (m ³ /s)	0.80	1.80	3.80	6.90		
Ave duration (days)	10	14	18	18		
Number	2	2	1	1		
Oct						
Nov	1					
Dec		1				
Jan			1			
Feb				1		
Mar		1				
Apr	1					
May						
Jun						
Jul						
Aug						
Sep						
Vol (10 ⁶ m ³)	0.66	1.91	2.83	4.05		
% PES (2022) MAR	1.42	4.08	6.07	8.67		

7.2.12 12_Luvuvhu

The REC is a **B/C** category, which is one half category higher than PES (2022) and will require improved management to achieve the higher category (**Section 2.2.3**).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-22), prior to development, with improved management = B/C.
- Future1 = C (**Table** 7-23), after development, with improved management = B/C.

Table 7-22 EWRs to maintain a C category at 12_Luvuvhu (PES 2022 flow scenario)

nMAR	388.014	MCM
S.Dev.	22.810	
CV	0.059	
Q75	0.905	
Ecological Category	С	
	MCM	% nMAR
Total EWR	151.920	39.153
Maint. Lowflows	114.146	29.418
Drought Lowflows	92.115	23.740
Maint. Highflows	37.773	9.735

Monthly Distributions (MCM)							
	Notural		Modified Flows (EWR)				
	Indiural	Lov	/flows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	9.253	1.441	3.625	0.169	1.610		
Nov	14.455	2.622	4.419	1.095	3.718		
Dec	30.646	7.833	7.423	4.808	12.641		
Jan	60.397	15.474	10.840	7.867	23.340		
Feb	92.187	25.241	13.731	9.055	34.296		
Mar	74.955	28.602	15.832	8.316	36.917		
Apr	37.623	16.085	10.752	5.574	21.658		
May	20.738	6.640	7.113	0.732	7.372		
Jun	15.321	3.964	5.587	0.090	4.055		
Jul	12.726	2.787	4.823	0.038	2.825		
Aug	10.651	1.938	4.195	0.007	1.944		
Sep	9.063	1.520	3.776	0.023	1.543		
Total	388.01	114.15	92.12	0.169	151.92		

Within year floods (excludes flood	s with a return p	eriod of ≥1:2 yea	rs)				
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	5.20	9.70	20.80	37.40			
Ave duration (days)	6	10	10	11			
Number	2	2	1	1			
Oct							
Nov							
Dec	1						
Jan	1	1					
Feb			1				
Mar				1			
Apr		1					
May							
Jun							
Jul							
Aug							
Sep							
Vol (10 ⁶ m ³)	3.72	9.88	8.32	16.91			
% PES (2022) MAR	1.56	4.13	3.48	7.07			

April 2024

Table 7-23	EWRs to	maintain a C	category	at 12_	Luvuvhu	(Future1	flow	scenario)
-------------------	---------	--------------	----------	--------	---------	----------	------	-----------

nMAR	388.014 MCM					
S.Dev.	22.810					
CV	0.059					
Q75	0.905					
Ecological Category	С					
	MCM	% nMAR				
Total EWR	116.651	30.064	Excludes floods with return period ≥1:2 years.			
Maint. Lowflows	87.104	22.449				
Drought Lowflows	92.115	23.740				
Maint. Highflows	29.547	7.615				
Monthly Distributions (MCM)						
	Natural	Modified Flows (EWR)				
		Lowflows		Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	9.253	1.228	3.625	0.070	1.298	
Nov	14.455	2.092	4.419	0.747	2.839	
Dec	30.646	5.298	7.423	3.271	8.568	
Jan	60.397	10.373	10.840	5.818	16.191	
Feb	92.187	18.789	13.731	7.058	25.846	
Mar	74.955	22.721	15.832	7.851	30.572	
Apr	37.623	12.820	10.752	4.198	17.017	
Мау	20.738	5.042	7.113	0.418	5.460	
Jun	15.321	3.130	5.587	0.052	3.182	
Jul	12.726	2.383	4.823	0.032	2.415	
Aug	10.651	1.842	4.195	0.010	1.852	
Sep	9.063	1.389	3.776	0.023	1.412	
Total	388.01	87.10	92.12	29.55	116.65	

Within year floods (excludes floods with a return period of ≥1:2 years)								
Flood can occur in the month before or after the month indicated								
Flood Class	Class1	Class2	Class3	Class4				
Ave peak discharge (m ³ /s)	5.20	9.70	20.80	37.40				
Ave duration (days)	8	14	9	12				
Number	1	1	1	1				
Oct								
Nov								
Dec	1							
Jan		1						
Feb			1					
Mar				1				
Apr								
Мау								
Jun								
Jul								
Aug								
Sep								
Vol (10 ⁶ m ³)	1.86	4.94	8.32	16.91				
% PES (2022) MAR	0.78	2.06	3.48	7.07				
7.2.13 13_Mutale1

The REC is a **C** category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-24), prior to development.
- Future1 = C/D (**Table** 7-25), after development.
- Synthetic Scenario 2 = C (**Table** 7-26), after development.

Table 7-24 EWRs to maintain a C category at 13_Mutale1 (PES 2022)

nMAR	121.822	MCM]				
S.Dev.	7.536						
CV	0.062						
Q75	0.315						
Ecological Category	С						
	MCM	% MAR					
Total EWR	87.596	71.905					
Maint. Lowflows	56.109	46.058	Evoludoo flood	o with roturn pariod >1:	2 vooro		
Drought Lowflows	26.295	21.585		s with return period ≥ 1 .	z years.		
Maint. Highflows	31.487	25.847					
Monthly Distributions (MCM)							
	Natural	Modified Flows (EWR)					
	Inatural	Low	vflows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	2.908	1.828	1.059	0.415	2.243		
Nov	5.668	3.207	1.695	1.472	4.679		
Dec	12.037	5.888	2.877	4.181	10.069		
Jan	22.649	9.399	4.294	5.897	15.296		
Feb	31.766	10.421	4.464	7.925	18.346		
Mar	23.447	10.140	4.505	7.593	17.733		
Apr	10.662	6.325	2.745	3.299	9.624		
Мау	4.208	3.143	1.440	0.360	3.503		
Jun	2.376	1.720	0.872	0.061	1.781		
Jul	2.323	1.608	0.856	0.104	1.712		
Aug	1.911	1.258	0.752	0.043	1.301		
Sep	1.868	1.173	0.735	0.137	1.310		
Total	121.82	56.11	26.30	31.49	87.60		

Within year floods (excludes floods with a return period of ≥1:2 years)								
Flood can occur in the month befo	Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4				
Ave peak discharge (m ³ /s)	2.60	5.10	9.80	19.00				
Ave duration (days)	7	13	15	18				
Number	4	2	2	1				
Oct								
Nov	1							
Dec	1	1						
Jan			1					
Feb				1				
Mar	1		1					
Apr	1	1						
Мау								
Jun								
Jul								
Aug								
Sep								
Vol (10 ⁶ m ³)	4.16	6.81	11.46	11.67				
% PES (2022) MAR	3.73	6.11	10.28	10.47				

April 2024

Table 7-25	EWRs to maintain a	C/D category	at 13_	_Mutale1	(Future1	flow	scenario)
-------------------	--------------------	--------------	--------	----------	----------	------	-----------

nMAR	121.822	MCM]			
S.Dev.	7.536					
CV	0.062					
Q75	0.315					
Ecological Category	C/D					
	MCM	% MAR				
Total EWR	65.684	53.918				
Maint. Lowflows	38.751	31.809	Evoludoo flood	o with roturn pariod >1:	2 vooro	
Drought Lowflows	26.295	21.585		s with return period ≥ 1 .	z years.	
Maint. Highflows	26.933	22.108				
Monthly Distributions (MCM)						
	Natural	Modified Flows (EWR)				
	Naturai	Low	vflows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	2.908	0.448	1.059	0.189	0.637	
Nov	5.668	1.224	1.695	0.636	1.860	
Dec	12.037	3.641	2.877	3.076	6.717	
Jan	22.649	7.400	4.294	5.372	12.772	
Feb	31.766	9.110	4.464	7.500	16.610	
Mar	23.447	8.824	4.505	6.888	15.713	
Apr	10.662	4.743	2.745	2.900	7.643	
Мау	4.208	1.639	1.440	0.240	1.879	
Jun	2.376	0.576	0.872	0.015	0.591	
Jul	2.323	0.457	0.856	0.026	0.483	
Aug	1.911	0.373	0.752	0.031	0.404	
Sep	1.868	0.315	0.735	0.061	0.376	
Total	121.82	38.75	26.30	26.93	65.68	

Within year floods (excludes flood	s with a return p	eriod of ≥1:2 yea	ars)				
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	2.60	5.10	9.80	19.00			
Ave duration (days)	7	15	15	20			
Number	2	2	1	1			
Oct							
Nov							
Dec	1						
Jan		1	1				
Feb				1			
Mar		1					
Apr	1						
Мау							
Jun							
Jul							
Aug							
Sep							
Vol (10 ⁶ m ³)	2.08	6.81	5.73	11.67			
% PES (2022) MAR	1.87	6.11	5.14	10.47			

Table 7-26 EWRs to maintain a C category at 13_Mutale1 (Synthetic scenario 2)

nMAR	121.822	MCM				
S.Dev.	7.536					
CV	0.062					
Q75	0.31501					
Ecological Category	С					
	MCM	% MAR				
Total EWR	68.161	55.951				
Maint. Lowflows	40.716	33.423		a with raturn pariad >1	2 1/2010	
Drought Lowflows	26.295	21.585	Excludes 1000	s with return period ≥ 1 .	z years.	
Maint. Highflows	27.445	22.528				
Monthly Distributions (MCM)						
	Notural		Modified Flows (EWR)			
	Natural	Low	vflows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	3.196	0.986	1.185	0.203	1.189	
Nov	2.908	0.808	1.059	0.167	0.975	
Dec	5.668	1.522	1.695	0.671	2.194	
Jan	12.037	3.875	2.877	3.028	6.903	
Feb	22.649	7.584	4.294	5.342	12.926	
Mar	31.766	8.969	4.464	7.625	16.594	
Apr	23.447	8.602	4.505	7.178	15.780	
Мау	10.662	4.729	2.745	3.016	7.745	
Jun	4.208	1.795	1.440	0.249	2.044	
Jul	2.376	0.752	0.872	0.054	0.806	
Aug	2.323	0.742	0.856	0.031	0.774	
Sep	1.911	0.701	0.752	0.031	0.732	
Total	1.868	0.636	0.735	0.051	0.687	

Within year floods (excludes flood	s with a return p	eriod of ≥1:2 yea	ars)				
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	2.60	5.10	9.80	19.00			
Ave duration (days)	8	15	13	19			
Number	2	2	1	1			
Oct							
Nov							
Dec	1						
Jan		1	1				
Feb				1			
Mar		1					
Apr	1						
May							
Jun							
Jul							
Aug							
Sep							
Vol (10 ⁶ m ³)	2.08	6.81	5.73	11.67			
% PES (2022) MAR	1.87	6.11	5.14	10.47			

7.2.14 14_Mutale2

The REC is a **C** category, which is the same as PES (2022).

EWR tables are provided for maintenance of:

- PES (2022) = C (**Table** 7-27), prior to development.
- Future1 = C/D (**Table** 7-28), after development.
- Synthetic Scenario 2 = C (**Table** 7-29), after development.

Table 7-27 EWRs to maintain a C category at 14_Mutale2 (PES 2022)

nMAR	153.098	MCM	7				
S.Dev.	11.962						
CV	0.078						
Q75	0.333						
Ecological Category	С						
	MCM	% nMAR					
Total EWR	103.765	67.777					
Maint. Lowflows	67.063	43.804	Evoludoo flood	a with raturn pariod >1.	Queero		
Drought Lowflows	30.071	19.642	Excludes libba	s with return period ≥1.	z years.		
Maint. Highflows	36.702	23.973					
Monthly Distributions (MCM)							
	Notural	Modified Flows (EWR)					
	Naturai	Low	vflows	Highflows	Total EWR		
Month	Mean	Maint.	Drought	Maint.	Maint.		
Oct	3.198	2.001	1.098	0.501	2.501		
Nov	6.784	3.347	1.714	1.662	5.010		
Dec	15.623	6.257	3.016	5.061	11.318		
Jan	29.488	10.677	4.827	7.505	18.182		
Feb	42.607	13.442	5.587	9.146	22.588		
Mar	29.026	13.943	5.758	8.277	22.220		
Apr	12.075	7.119	2.901	3.763	10.882		
Мау	4.691	3.467	1.529	0.483	3.950		
Jun	2.711	2.035	1.008	0.051	2.086		
Jul	2.627	1.903	0.960	0.083	1.986		
Aug	2.166	1.467	0.844	0.059	1.526		
Sep	2.100	1.404	0.828	0.111	1.515		
Total	153.10	67.06	30.07	36.70	103.76		

Within year floods (excludes floods with a return period of ≥1:2 years)							
Flood can occur in the month before or after the month indicated							
Flood Class	Class1	Class2	Class3	Class4			
Ave peak discharge (m ³ /s)	3.50	7.40	14.90	27.70			
Ave duration (days)	7	13	10	18			
Number	3	2	2	1			
Oct							
Nov	1						
Dec	1	1					
Jan		1	1				
Feb				1			
Mar			1				
Apr	1						
Мау							
Jun							
Jul							
Aug							
Sep							
Vol (10 ⁶ m ³)	5.05	11.31	14.24	13.09			
% PES (2022) MAR	3.70	8.28	10.42	9.58			

April 2024

Table 7-28 EWRs to maintain a C/D category at 14_Mutale2 (Future1 flow scenario)

nMAR	153.098	MCM	7		
S.Dev.	11.962				
CV	0.078				
Q75	0.3328				
Ecological Category	C/D				
	MCM	% nMAR			
Total EWR	81.565	53.277			
Maint. Lowflows	49.569	32.378		a with raturn pariod >1.	Queero
Drought Lowflows	30.071	19.642	Excludes libou	s with return period ≥ 1 .	z years.
Maint. Highflows	31.996	20.899			
Monthly Distributions (MCM)					
	Notural		Modified Flows (EWR)		
	Naturai	Low	vflows	Highflows	Total EWR
Month	Mean	Maint.	Drought	Maint.	Maint.
Oct	3.198	0.641	1.098	0.184	0.824
Nov	6.784	1.368	1.714	1.053	2.421
Dec	15.623	4.309	3.016	3.616	7.924
Jan	29.488	8.940	4.827	6.693	15.633
Feb	42.607	12.033	5.587	8.831	20.865
Mar	29.026	12.431	5.758	7.707	20.137
Apr	12.075	5.445	2.901	3.385	8.830
Мау	4.691	1.872	1.529	0.383	2.255
Jun	2.711	0.827	1.008	0.017	0.844
Jul	2.627	0.681	0.960	0.021	0.702
Aug	2.166	0.550	0.844	0.040	0.590
Sep	2.100	0.474	0.828	0.066	0.540
Total	153.10	49.57	30.07	32.00	81.57

Within year floods (excludes floods with a return period of ≥1:2 years)								
Flood can occur in the month before or after the month indicated								
Flood Class	Class1	Class2	Class3	Class4				
Ave peak discharge (m ³ /s)	3.50	7.40	14.90	27.70				
Ave duration (days)	13	12	13	18				
Number	1	2	1	1				
Oct								
Nov	1							
Dec		1						
Jan			1					
Feb				1				
Mar		1						
Apr								
Мау								
Jun								
Jul								
Aug								
Sep								
Vol (10 ⁶ m ³)	1.26	7.54	7.12	13.09				
% PES (2022) MAR	0.92	5.52	5.21	9.58				

Table 7-29 EWRs to maintain a C category at 14_Mutale2 (Synthetic scenario 1)

nMAR	153.098	MCM				
S.Dev.	11.962					
CV	0.078					
Q75	0.333					
Ecological Category	С					
	MCM	% nMAR				
Total EWR	83.626	54.623				
Maint. Lowflows	51.662	33.745	Evoludoo flood	a with raturn pariad >1	2.10000	
Drought Lowflows	30.071	19.642	Excludes libou	s with return period ≥ 1 .	z years.	
Maint. Highflows	31.964	20.878				
Monthly Distributions (MCM)						
	Notural		Modified Flows (EWR)			
	inatural	Low	vflows	Highflows	Total EWR	
Month	Mean	Maint.	Drought	Maint.	Maint.	
Oct	3.198	0.894	1.098	0.184	1.077	
Nov	6.784	1.642	1.714	1.052	2.694	
Dec	15.623	4.514	3.016	3.597	8.111	
Jan	29.488	9.070	4.827	6.686	15.756	
Feb	42.607	12.114	5.587	8.832	20.946	
Mar	29.026	12.526	5.758	7.701	20.227	
Apr	12.075	5.542	2.901	3.385	8.927	
Мау	4.691	2.000	1.529	0.383	2.383	
Jun	2.711	0.989	1.008	0.017	1.006	
Jul	2.627	0.888	0.960	0.021	0.909	
Aug	2.166	0.780	0.844	0.040	0.820	
Sep	2.100	0.703	0.828	0.066	0.769	
Total	153.10	51.66	30.07	31.96	83.63	

Within year floods (excludes floods	s with a return per	riod of ≥1:2 years))	
Flood can occur in the month befo	re or after the mo	nth indicated		
Flood Class	Class1	Class2	Class3	Class4
Ave peak discharge (m ³ /s)	3.50	7.40	14.90	27.70
Ave duration (days)	13	12	12	18
Number	1	2	1	1
Oct				
Nov	1			
Dec		1		
Jan			1	
Feb				1
Mar		1		
Apr				
Мау				
Jun				
Jul				
Aug				
Sep				
Vol (10 ⁶ m ³)	1.26	7.54	7.12	13.09
% PES (2022) MAR	0.92	5.52	5.21	9.58

7.3 Summary

The EWRs for all the study sites are summarised in Table 7-30. The data provided are:

- Whether future developments are planned or not
- The Ecological Importance and Sensitivity (EIS)
- The Recommended Ecological Category (REC)
- The scenario from which the EWRs were derived
- The Ecological Category maintained by the relevant scenario
- Whether additional non-flow related mitigation measures are advised to maintain the REC
- The natural Mean Annual Runoff (nMAR) in units of Million Cubic Metres (MCM)
- The maintenance low flow requirements in units of MCM and as a percentage of nMAR
- The maintenance high flow requirements in units of MCM and as a percentage of nMAR
- The total maintenance flow requirements in units of MCM and as a percentage of nMAR.

Table 7-30 Summary of Ecological Water Requirements

Future					Foological	Management			Ecological	Ecological Water Requirements						
development?	EWR site	EIS	REC	Scenario	Ecological	actions?	nMAR	Low	%	High	%	Total	%			
Yes / No					category	Yes / No	MCM	МСМ	nMAR	MCM	nMAR	МСМ	nMAR			
Vec	1 Lenhala	Moderate	B/C	PES (2022)	C	Vec	66 217	37.824	57.1	7.872	11.9	45.696	69			
165		Moderate	D/C	Future1	C	165	00.217	35.825	54.1	7.773	11.7	43.557	65.8			
No	2_Rietfontein	Moderate	B/C	PES (2022)	B/C	No	0.181	0.057	31.7	0.010	5.3	0.067	40			
NO	3_Olifantspruit	Moderate	B/C	PES (2022)	С	Yes	7.815	3.385	43.3	2.616	33.5	6.002	76.8			
	1 Mogalakwena1	Moderate	C	PES (2022)	С	No	130 300	26.120	20.0	6.368	4.9	32.488	24.9			
Vaa		Moderate	C	Future1	B/C	NO	130.390	29.828	22.9	7.985	6.1	37.792	29			
Tes	5 Mogalakwana2	Modorato	C	PES (2022)	<u> </u>	No	199.046	39.096	20.7	4.343	2.3	43.439	23			
	5_IVIOYalakwellaz	Moderate	C	Future1	C	NO	100.940	39.671	21	4.755	2.5	44.516	23.6			
No	6_Kolope	Moderate	B/C	PES (2022)	С	Yes	1.998	0.349	17.5	0.017	0.9	0.366	18.3			
	7 Sand	Modorato	C	PES (2022)	С	No	22 125	4.125	17.9	1.421	6.1	5.546	24			
		Moderate	C	Future1	B/C	NO	23.125	22.276	96.3	6.674	28.9	28.95	125.2			
				PES (2022)	С	No		41.595	42.3	8.662	8.8	50.257	51.1			
	8 Nzhololo	Moderate	C	Future1	D		98 42	24.584	25	4.951	5	29.535	30			
Yes		woderate	Ŭ	Synthetic	C/D		30.42	27 482	27.9	4 902	5	32 383	32.9			
				Scenario1	0/2			21.102	21.0	1.002		02.000	02.0			
				PES (2022)	C	No		11.872	36.4	4.42	13.6	16.292	50			
	9 Nwanedi	Moderate	С	Future1	D		32.578	8.517	26.1	3.453	10.6	11.97	36.7			
	- •			Synthetic Scenario1	C/D			9.087	27.9	3.432	10.5	12.52	38.4			
No	10_Latonyanda	Moderate	С	PES (2022)	C	No	23.206	13.507	58.6	3.2	13.7	16.785	72.3			
	11 Mutshindudi	Moderate	C	PES (2022)	C	Vec	56 420	24.108	42.7	16.703	29.605	40.811	72.335			
		Moderate	U	Future1	U	163	50.420	20.591	36.5	12.5	22.2	33.091	58.7			
	12 Luvuvbu	Moderate	B/C	PES (2022)	C	Vec	388 014	114.146	29.4	37.773	9.7	151.92	39.1			
		Moderate	D/C	Future1	C	163	300.014	87.104	22.5	29.547	7.6	116.651	30.1			
				PES (2022)	С			56.109	46.1	31.487	25.8	87.596	71.9			
Yes	13 Mutale1	Moderate		Future1	C/D	No	121 822	38.751	31.8	26.933	22.1	65.684	53.9			
Yes	10_Watale1	Moderate		Synthetic	C	NO	121.022									
			С	Scenario2				40.716	33.4	27.445	22.5	68.161	56			
				PES (2022)	С			67.063	43.8	36.702	24	103.765	67.8			
	14 Mutale2	Moderate		Future1	C/D	No	153.098	49.569	32.4	32	20.9	81.565	53.3			
1		Moderate		Synthetic Scenario1	С			51.662	33.8	31.964	20.9	83.626	54.6			

8 LIMCOM STUDY SUMMARY OF ECO-CATEGORISATION AND EWRS

There are eight reports from the LIMCOM EWR study of the Limpopo River basin:

- E-Flows¹¹ for the Limpopo River Basin Inception Report (Dickens and O'Brien 2020)
- E-Flows for the Limpopo River Basin Basin Description (Dickens et al. 2020a)
- E-Flows for the Limpopo River Basin From Vision to Management (Dickens et al. 2020b)
- E-Flows for the Limpopo River Basin Specialist Literature and Data Review (Dickens et al. 2022a)
- E-Flows for the Limpopo River Basin Drivers of Ecosystem Change (Dickens et al. 2022b)
- E-Flows for the Limpopo River Basin Ecological Responses to Change (O'Brien et al. 2022a)
- E-Flows for the Limpopo River Basin Environmental Flow Determination for the Limpopo Basin (O'Brien *et al.* 2022b)
- Risk of Altered Flows to the ecosystem services of the Limpopo Basin (O'Brien et al. 2022c).

The executive summary that explains the methods used (O'Brien *et al.* 2022b) is provided in **Appendix A** with permission from USAID and IWMI.

The Limpopo River basin study is ongoing (as at February 2024) having just entered a new phase of work in three concurrent projects:

- To harmonise the EWRs for the Limpopo River basin, which will include making use of the EWRs determined for the rivers in South Africa (Section 7).
- To connect and interact with various stakeholders extensively.
- To define and analyse scenarios of possible future outcomes that are likely to influence freshwater ecosystems of the Limpopo River basin.

The EWRs from South Africa will become part of the project to harmonise EWRs for the Limpopo River basin and the outcomes of scenario analyses from this EWR assessment and the WRCS process will also be considered in the analysis of LIMCOM scenarios. Likewise, the existing EWRs from the first LIMCOM project (O'Brien *et al.* 2022b) will be used in the analysis of scenarios during the WRCS process, along with those determined in this project for the two Ramsar wetlands and the rivers in this report.

The LIMCOM study provides EWRs for 18 river sites in the Limpopo River basin, five of these were in South Africa: the Lephalala, Mogalakwena, Sand, Luvuvhu and Shingwedzi Rivers. All these five sites are located at the downstream end of the river basins just upstream of their confluences with the Limpopo River (**Figure** 1-1).

A summary of EWR related information that will be taken forward into the WRCS is taken from the LIMCOM report series (**Section 1.4**), with permission from USAID and IWMI.

¹¹ In the LIMCOM study the term E-flows is used in place of EWRs

8.1 Lephalala River site LEPH-A50H-SEEKO

The Lephalala River is naturally a perennial river and currently the river does not flow all year round (**Figure** 8-1). There is extensive irrigation in the upper and middle reaches with numerous small dams on the river and its tributaries.

Figure 8-1: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PRS) and base flow separated (BF)) for the Lephalala River (LEPH-A50H-SEEKO)

The current and historical water quality data were compared. The total dissolved solids and electrical conductivity were higher than the historical maximums and the inorganic phosphate levels were higher than the average levels.

The EWR site is situated in the lowlands (**Table** 8-1) along a sandy reach immediately downstream of a steep bedrock section with a weir and bridge. It has a single channel with inset benches, flood benches and a high floodplain/terrace (**Figure** 8-2). The bed consists mostly of fine gravel and coarse sand. Narrow elongated medium gravel bars form in the channel and provide anchor to reeds. The banks are composed of fine sand and silt, with recent medium grained sand deposits on the flood benches. There is evidence of recent high flows with extensive sand deposits and flood debris on flood prone areas. Shallow sandy pools are likely at low flow, with deeper pools associated with bedrock sections. The observed flow was mostly a glide type due to the largely uniform bed structure. Flood debris surveyed in at 6.8m. Some bank erosion is evident around exposed tree roots on near vertical banks and associated with the recent floods.

Site code	Latitude	Longitude	Date	Slope	Geozone	Discharge (m ³ /s)
LEPH-A50H-SEEKO	-23.141278	27.885028	24/04/2021	0.00051	Lowland river	3.51

Table 8-1: Slope, geozone and discharge measured at LEPH-A50H-SEEKO

The Lephalala River, at this EWR site, was a single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated). Banks were dominated by tall trees and shrubs (some creeping shrubs), mostly riparian, but with some terrestrial and alien species, flood benches were mixed woody and non-woody and alluvial bars were dominated by non-woody grasses and sedges and some with linear reed beds. Alien vegetation was common, especially along unconsolidated alluvial deposits, but was mostly limited to annual weed species (Notably *Xanthium strumarium* and *Datura innoxia*). Dominant species included *Cynodon dactylon, Phragmites mauritianus, Panicum maximum, Combretum erythrophyllum, Vachellia gerardii, Ziziphus mucronata, Senegalia schweinfurthii, Faidherbia albida and Gymnosporia senegalensis.*

The site occurs along sub-quaternary A50H-00110. This sub-quaternary was assessed as a category D overall (largely modified; DWS 2014). Riparian zone continuity was largely modified and riparian zone modification was moderately modified. The majority of the impacts were flow related, both in terms of quantity and quality. The present ecological state was a PES score of 67.8% (category **C**, which is moderately modified from reference conditions). The most notable impacts on PES were reduced flows and floods that facilitate an increase in woody cover on the valley floor, notably *Faidherbia alba*, whose cohorts along the active channel suggest less frequent and smaller floods. There was some vegetation removal for roads, fence lines and the weir. Invasion by annual weeds was widespread and dense, especially on the valley bed. Benthic green algae in the channel suggested high nutrients but this could also be due to lower flows.

Flow conditions were visually rated as high, and the water colour was visually rated light to greenish brown. Instream habitat was rated as moderate to low, with boulders, cobble, and bedrock abundant downstream from the weir, but sand-mud and less often gravel dominant further downstream. Velocity-depth categories were well represented below the weir, but variety diminished further downstream. The marginal vegetation was dominated by reeds, with sedges and grasses present but very limited. Six sampling efforts were carried out in cobble, gravel, vegetation, and sand-mud-silt biotopes. Habitat heterogeneity for the site was high downstream of the weir, and homogenous further downstream. Overall habitat was rated to have moderate to low heterogeneity. The invertebrates were in a C/D category with a MIRAI score of 61%, meaning the community was moderately to largely impaired. Taxa diversity was low in 2021, with several expected taxa absent. Taxa rated as sensitive in SASS5 were present but not dominant. Flow sensitive taxa were dominant in cobble biotopes in-current.

Figure 8-2: (a) View of the channel from the right bank, (b) gravel from elongated gravel bars, (c) channel view from left bank, (d) recently deposited sediment from flood bench

There was a high diversity of fish species, with 18 species present. The main problems affecting fish at this site was nutrient pollution that was evident by the dominance of primary producers (benthic algae). There was a high level of sediment on the channel bed from the commercial farms, over-grazing, dirt roads and urban areas. At the time of sampling, flow was high, the water slightly discoloured. There was good fish habitat immediately downstream of the weir and reduced habitat heterogeneity further downstream. Nutrient pollution causes a decline in biodiversity, through both a loss in species and through increased dominance of certain primary producers (Barker 2006; Cardinale 2011; Nie *et al.* 2018). Zinc was in a "poor" classification, which along with mercury, cadmium, copper, and lead are the most important heavy metal pollutants that affect the aquatic environment and health of fish (Authman et al. 2015).

The PES and REC for this site is a **C** category. The EWRs proposed for the site will return this naturally perennial river back into its perennial condition, although with reduced flows compared to its natural state (**Figure** 8-3). October represents the lowest observed flows in the hydrological record. The minimum EWR in October is $0.264 \text{ m}^3/\text{s}$.

Table 8-2: Summary of EWRs for a C category at LEPH-A50H-SEEKO

River	Site	nMAR (106m3)	%Drought	%Baseflows	%Floods	%Total
Lephalala	LEPH-A50H-SEEKO	142	8.79	18.09	21.02	39.11

Figure 8-3: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C) EWR scenario for the LEPH-A50H-SEEKO site. (The x in the box and whisker plots shows the mean value).

8.2 Mogalakwena River site MOGA-A36D-LIMPK

The Mogalakwena River is naturally a perennial river and currently flows all year round (**Figure** 8-4). Extensive irrigation occurs in the system from numerous small dams and a few larger dams, namely Doorndraai, Rooiwal and Glen Alpine Dams. The EWR site is situated upstream of the confluence with the Limpopo River (**Figure** 1-1). The Mogalakwena River and its floodplain supports fishing and farming services, and water is also used for household and small hold agriculture.

Figure 8-4: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PRS) and base flow separated (BF)) for the Mogalakwena River (MOGA-A36D-LIMPK)

Water quality at the time of sampling showed elevated levels of nutrients, sulphates, sodium, magnesium, and calcium.

The EWR site is located in the lowlands (**Table** 8-3). The Mogalakwena is a mixed bed single channel with a wandering planform. The site is located downstream of a steep bedrock section with a weir on it. The river follows a pool riffle sequence when there is flow (no perceptible flow during field visit). Coarse sand and gravels dominate the relatively flat bed. Banks consist of fine sand and silt, with medium sand deposits on the left flood bench. The right flood bench has a gravel cover. There are low signs of siltation in the pools. The banks are poorly vegetated and eroding, with short sections of bank that is undercut. The banks are trampled by game.

Table 8-3: Slope, geozone and discharge measured at MOGA-A36D-LIMPK

Site code	Latitude	Longitude	Date	Slope	Geozone	Discharge (m³/s)
MOGA-A36D-LIMPK	-22.473444	28.919500	26/04/2021	0.00011	Lowland river	0.0001

The Mogalakwena River at this site was a seasonal single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel. Banks were dominated by tall trees and shrubs, clearly riparian, with a distinct treeline and require strongly seasonal flows or permanent pools. Riparian forest was dominated by *Schotia brachypetala, Ficus sycomorus, C. imberbe, Croton megalobotrys, F. albida, Philonoptera violacea* and *Colophospermum mopane.* The alluvial channel bed was dominated by open areas, linear stretches of reeds (*P. mauritianus*) and some tall shrub (notably *Nuxia oppositifolia*) stabilizing bank edges. The channel was dominated by filamentous green algae and sedges along the edge (*C. longus*). The site is known to host a population of Pel's fishing owl that nest in the riparian trees.

The site occurs along sub-quaternary A63D-00034. This sub-quaternary was assessed as a category C overall (moderately modified; DWS, 2014), but riparian zone continuity was only slightly modified, and riparian zone modification was moderately modified. The majority of the impacts were flow related. From 1955 to 2018 there has been an overall increase in woody vegetation cover although multiple changes are evident with some areas reducing woody cover. Tributaries show a noticeable increase in woody vegetation. The present state was a PES score of 76.4% (category **C**, which is moderately modified from reference conditions). The most notable impacts to PES were the reduction and regulation of flow. Many weirs occur along this reach with extensive irrigation. Bank and flood feature denudation from severe grazing and trampling pressure has led to erosion in some places. Some alien species are present but limited to annual weeds. Filamentous green algae suggest elevated nutrients.

Figure 8-5: (a) An upstream view of the sandy channel, (b) coarse sand on the channel bed, (c) eroding left bank, (d) gravel deposit on right flood bench

Flow was restricted to a trickle close to the weir wall, with no areas with any visible flow. The water colour was clear, with substrates at the site dominated by bedrock, cobble, gravel, and sand. Instream habitat was rated as low due to the lack of hydraulic biotope and flow-depth diversity. There was no marginal vegetation at the site, linked to recent bank scouring during high flows and the now absent flow. Eight sampling efforts were carried out in the trickle, in stones out of current, and in a sandy pool. Due to the limited flow and lack of marginal vegetation, habitat heterogeneity was rated low. Due to the shallowness of the trickle, the rocky substrates occupied a considerable volume of the area sampled. The invertebrates were in a D category, with a MIRAI score of 49%, meaning the community was rated as largely impaired. One flow sensitive taxon, Trichoptera: Hydropsychidae was surviving the available flow, but it is speculative whether it will complete its life cycle. Other expected flow sensitive taxa were all absent. No SASS-rated sensitive taxa were present.

Chiloglanis paratus and *Labeo molybdinus* are moderately intolerant to no flow conditions and moderately intolerant to modified water quality (DWS 2014). They are substrate specialists and require mostly fast flows, however, *L. molybdinus* does prefer slow deep habitats (DWS 2014; Skelton 2001). The absence of these species was attributed to altered flows at MOGA-A36D-LIMPK. Nutrient pollution causes a decline in biodiversity, through both a loss in species and through increased dominance of certain primary producers (Barker 2006; Cardinale 2011; Nie *et al.* 2018). Zinc was in a "poor" classification, which along with mercury, cadmium, copper, and lead are the most important heavy metal pollutants that affect the aquatic environment and health of fish (Authman *et al.* 2015).

The PES and REC was a **C** category. The EWRs proposed for the site will return this naturally perennial river back into its perennial condition, although with reduced flows compared to its natural state (**Figure** 8-6). October represents the lowest observed flows in the hydrological record. The minimum EWR in October is 0.9 m^3 /s.

Table 8-4: Summary of EWRs for a C category at MOGA-A36D-LIMPK

Site code	Latitude	Longitude	Date	Slope	Geozone	Discharge (m³/s)
MOGA-A36D-LIMPK	-22.473444	28.919500	26/04/2021	0.00011	Lowland river	0.0001

Figure 8-6: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C) EWR scenario for the MOGA-A36D-LIMPK site. (The x in the box and whisker plots shows the mean value).

8.3 Sand River site SAND-A71K-R508B

The Sand River is naturally a seasonal river (**Figure** 8-7). There are a number of dams situated in the catchment for irrigation purposes; the Houtrivier, Turfloop, and Dikigale Dams. The EWR site is located upstream of the R508B road bridge from Musina to Tshipise, and downstream of Musina town (**Figure** 1-1). This is an important part of the catchment that supports the population from Musina for water provisioning, fishing and agriculture. Community members fish a number of species at this site which includes Tilapia, Carp and Tigerfish. Further downstream of this site, subsistence and commercial irrigation farming (tomatoes, beans) in downstream villages (Masisi) is common. Fresh produce shops around the Masisi village rely on groundwater (adverts for groundwater drilling). Cultural and spiritual ecosystem services were observed in this part of the catchment as burnt candles from these rituals were observed. This site is also used to harvest medicinal plants.

Figure 8-7: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PRS) and base flow separated (BF)) for the Sand River (SAND-A71K-R508B)

Water quality at the time of sampling had elevated nutrients, chlorine, sulphates, sodium, potassium, and magnesium. Water temperature was high probably due to a shallow riverbed, with elevated pH and dissolved oxygen.

The EWR site was located in the lower foothills (**Table** 8-5). This section of the Sand River is a bedrockcontrolled reach with a mixed load channel (**Figure** 8-8). The complex channel morphology is composed of a single wandering low-flow channel, with several high flow channels. Sand bars form small well vegetated islands between the high flow channels and a narrow flood bench is present along the left bank. Gravel bars form in the channel and on flood features in an otherwise coarse sand dominated channel. A recent flood level was surveyed at 1.6m above the thalweg elevation.

Site code	Latitude	Longitude	Date	Slope	Geo Zone	Discharge (m ³ /s)
SAND-A71K-R508B	-22.399278	30.099417	28/04/2021	0.0018	Lower foothills	0.01

Table 8-5: Slope, geozone and discharge measured at SAND-A71K-R508B

The Sand River at this site was a single alluvial channel. Banks were gentle, merging into the upland and dominated by mostly terrestrial woody shrubs and trees (notably *V. tortilis*), but with some riparian indicators (*P. violacea, C. imberbe, S. brachypetala* and *F. sycomorus*). The macro-channel valley was undulating, with denuded alluvial high flow and flood channels, with dense vegetation on alluvial deposits, mainly sedges (*C. sexangularis*) and shrubs (*Pluchea dioscoridis*) but with some tree recruitment in places (*F. albida*). The active channel was narrow and with substrate covered by algae, lined by sedges and shrubs in places, otherwise open. The presence of *Cyperus sexangularis* near the active channel suggests the river is seasonal.

The site occurs along sub-quaternary A71K-00019. This sub-quaternary was assessed as a category **B** overall (Largely natural; DWS 2014), riparian zone continuity was only slightly modified, and riparian zone modification was also largely natural. The majority of the impacts were flow related (quantity). From 1937 to 1987 there was an increase in tree density and coverage and then a reduction to 2020 where tree cover and density was less than in 1937. The channel does however appear to be stable (**Figure** 8-8 below). The present state was a PES score of 78.3% (category B/C, which is slightly modified from reference conditions). The most notable impacts observed are vegetation removal for roads, fences, people and livestock access, and some invasion by alien plant species along the macrochannel valley, the majority were annual weeds.

Figure 8-8: (a) View of left bank with gravel and sand bar in fore ground, (b) view from right bank, (c) high flow channel and vegetated sand bars, (d) gravel bar, (e) coarse sand from channel Flow was visually rated as very low, predominantly shallow over sandy substrates. Water in the stream was categorised as warm, alkaline and subsaline. The water colour was clear to light brown, with cobbles limited, large boulders present, fine gravel to coarse sand dominant, and silt-mud-sand dominating slower flowing portions. Instream habitat was rated as low due to the lack of hydraulic biotope, and flow-depth diversity. Marginal vegetation was present but limited. Six sampling efforts were carried out across the narrow channel, mainly in the sand-gravel substrates. Cobbles were present but limited, with large boulder-bedrock and sand the dominant substrates. Only cobble-gravel-sand-mud substrates were sampled. Habitat heterogeneity was rated low. Habitat cover for invertebrates was relatively good where available but those habitats were limited. The invertebrates were in a C category, with a MIRAI score of 72%, meaning the community was moderately impaired. Taxa diversity was relatively low, with sensitive taxa mostly absent. Flow sensitive taxa were scarce and dominated by two Hydropsychidae species. Impaired conditions were attributed to limited instream habitat linked to subsaline conditions, with low flow-velocity habitat and substrate diversity.

Chiloglanis paratus and *Labeo molybdinus* are moderately intolerant to no flow conditions and moderately intolerant to modified water quality (DWS 2014). They are substrate specialists and require mostly fast flows, however, *L. molybdinus* does prefer slow deep habitats (DWS 2014; Skelton 2001). The absence of these species are attributed to the absence of preferred habitat and altered water quality at SAND-A71K-R508B. *Labeobarbus marequensis, C. paratus, Labeo congoro, L.cylindricus, L. molybdinus, Micralestes acutidens* are fish expected in the Limpopo River Basin that are moderately intolerant to altered water quality (DWS 2014). These were not found at SAND-A71K-R508B because of compromised water quality from surrounding agricultural, industrial, urban and informal settlements that compromise the water quality.

The REC and PES was a **C** category. The EWRs proposed for this site are summarised in **Table** 8-6 and given in **Figure** 8-9.

Table 8-6: Summary of EWRs for a C category at SAND-A71K-R508B

			Riv	ver			Si	te			nMAR (10 ⁶ m ³)			m³)	%Drought	%Baseflows	%Floods	%Total
			Sa	ind	SA	AND	-A71	1K-R	2508	зв		7	4		0	9.02	23.41	32.43
		L																
	Oct			Dee	lan	Fab	Max	0.04	Mari	lun	Ind 1	A.u.a.	Con					
0.	1 11	.3 1	15.1	15.1	128.0	662.3	105.6	16.8	6.5	6.2	5.6	5.2	4.9	25.0	1	Natural Flows		
	1 5.	.5 1	0.1	12.2	85.0	201.4	38.3	9.0	3.1	2.9	2.5	2.3	2.1	23.0				
1	0 0.	.7	5.3	4.8	10.9	9.3	9.6	2.7	0.8	0.7	0.6	0.8	0.5	20.0		T		
1	5 0. 0 0.	.4 :	3.7 2.2	4.5 3.3	7.5 6.3	7.7 6.0	3.7 2.8	1.8 1.3	0.6	0.4	0.3	0.2	0.3	15.0		*		
3	0 0.	.1	1.5	2.5	3.6	3.4	1.7	0.9	0.4	0.2	0.1	0.1	0.1	15.0		T		
4	0 0.	.0 (0.8	1.7	1.9	0.8	0.7	0.6	0.3	0.1	0.0	0.0	0.0	10.0	I.			
6	00.	.0	0.2	0.8	0.9	0.5	0.5	0.3	0.1	0.0	0.0	0.0	0.0	5.0				
8	0 0.	.0 0	0.0	0.2	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	5.0	\times \times	Ţ		
8	5 0.	.0 0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	×		<u>,</u>	
9	5 0.	.0 (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Oct Nov	🔲 Dec 📕 Jan 📕 Feb 📕 M	ar	
9 99.	9 0. 9 0.	.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		📕 Apr 📕 May	📕 Jun 📕 Jul 📕 Aug 📕 Se	p	
_	_																	
	0.1	Oct 4.3	Nov 7.6	Dec 8.8	Jan 107.2	Feb 544.8	Mar 70.8	Apr 10.2	May 2.4	Jun 1.8	Jul 1.3	Aug 1.1	Sep 1.0			Present Flows		
	1	1.4	5.4	6.0	59.0	163.2	29.1	3.7	0.5	0.4	0.2	0.2	0.1	25.0				
	10	0.0	1.7	1.3	5.6	4.3	3.5	0.8	0.0	0.0	0.0	0.0	0.0	20.0				
-	15 20	0.0	0.8	1.0 0.5	2.9	3.4	1.0 0.4	0.0	0.0	0.0	0.0	0.0	0.0					
	30	0.0	0.0	0.1	0.6	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.0				
	50	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0		×		
	60 70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			×		
	80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0		L I		
	85 90	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	×		<u>-</u>	
	95	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Oct Nov	r 🔲 Dec 📒 Jan 📕 Feb 📕 N	ar	
B	99 99.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Apr May	y 📕 Jun 📕 Jul 📕 Aug 📕 Se	p	
_																		
-	0.1	Oct 0.165	Nov	Dec 2.03	Jan 8 2.22	Feb 9.365	Mar 1.395	Apr 1.240	May 0.227	Jun 7 0.196	Jul 0.165	Aug 0.142	Sep 2 0.125			E-Flows		
	1	0.165	1.174	1 2.03	5 2.21	7 9.346	6 1.390	1.235	0.226	6 0.195	0.164	0.141	0.125	25.000				
	5 10	0.164	1.171	1 2.03 3 1.87	5 2.17	9 9.337 2 8.830	1.384	1.226	0.224	0.194 0.192	0.164	0.14	0.125 3 0.121	20.000				
	15 20	0.158	1.133	3 1.79 5 1.55	6 1.96	5 7.733 5 6.039	3 1.341 1.297	1.189	0.214	0.187	0.157	0.133	3 0.119 1 0.111					
	30	0.097	0.970	1.16	3 1.41	4 3.376	6 1.152	0.907	0.177	0.155	0.119	0.093	3 0.066	15.000				
	40 50	0.052	0.753	0.82 0.41	3 1.040 3 0.56	2.192 3 0.787	0.898	0.571	0.128	0.119	0.060	0.030	0.000	10.000		L		
	60 70	0.000	0.239	0.23	3 0.30	5 0.467	0.370	0.285	0.042	2 0.008	0.000	0.000	0.000	E 000				
	80	0.000	0.000	0.02	1 0.07	7 0.074	0.100	0.019	0.000	0.000	0.000	0.000	0.000	5.000		×		
	85 90	0.000	0.000	0.06	9 0.05 1 0.00	6 0.029 0 0.000	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000		× × + + -	-	
	95	0.000	0.000	0.00	0 0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		Oct Nov	/ Dec 📕 Jan 📕 Feb 📕 N	ar	
C	99.9	0.000	0.000	0.00	0 0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		Apr Ma	y 📕 Jun 📕 Jul 📕 Aug 📕 Se	p	

Figure 8-9: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C) EWR scenario for the SAND-A71K-R508B site. (The x in the box and whisker plots shows the mean value).

8.4 Luvuvhu River SITE LUVU-A91K-OUTPO

The Luvuvhu River is naturally a perennial system and currently the river flows all year round **(Figure** 8-10). The EWR site is located on the Luvuvhu River in Kruger National Park below Outpost private lodge (**Figure** 1-1). Water use includes afforestation in upper reaches, irrigation and domestic water use. There are a number of large dams in the catchment, including Albasini, Vondo and Nandoni Dams.

Figure 8-10: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PRS) and base flow separated (BF)) for the Luvuvhu River (LUVU-A91K-OUTPO)

The current and historical water quality data were compared. The total dissolved solids, electrical conductivity and nutrients were all higher than the 50th percentile levels.

The EWR site is in the lower foothills (**Table** 8-7). This section of the Luvuvhu River is characterised by a pool riffle sequence with cobble and boulder sized material along the riffle. Sandy lee bars develop downstream of boulder high points. Small coarse sand and fine gravel deposits are found between the cobble and boulder high points in the slower flow of the riffle. The gravels and cobbles are moderately loose and mobile and were not embedded in sand or gravel. There was very low embeddedness and imbrication in the flowing water of the riffle and higher levels of imbrication and embeddedness out of the main flow zone. Bedrock is present along the left bank. The steep right bank is composed of loose medium to coarse sand and show erosion and deposition from the last flood. The pools are lined with sand and silt over cobble and gravel. Sandy inset benches develop and are covered by reeds.

Site code	Latitude	Longitude	Date	Slope	Geo Zone	Discharge (m³/s)	
LUVU-A91K-OUTPO	-22.444444	31.083444	29/04/2021	0.004	Lower foothills	17.43	

The Luvuvhu River, at the site, was a single confined channel mostly dominated by alluvial features, with consolidated banks and unconsolidated within-channel deposits of sand and gravel (open and vegetated), and with an extensive gravel/cobble point bar downstream of the site. Looking upstream from the site the channel was single, bank full and with tall trees to the water's edge. Looking downstream the channel rounded a gravel/cobble point bar with some shrub (*P. dioscoridis*) and flood-damaged trees (*F. albida, Syzygium gerardii*). The marginal zone was either open unvegetated, woody (tall tree and shrub, notably *P. dioscoridis, S. gerardii, F. sycomorus, Breonadia salicina*) or lined by reeds, sedges and grasses, inundated at the time (P.*mauritianus, G. fruticosus, C. longus, C. dactylon*). The floodplain was mostly open sand with some cobble deposits, supporting younger trees, *C. imberbe* and *F. albida*, with tall trees at the edge (Figs, Nyala trees, Apple Leaf and Leadwoods). Banks were alluvial, mostly woody and steep with some open sandy areas.

The site occurs along sub-quaternary A91K-00039. This sub-quaternary was assessed as a category **B** overall (Largely natural; DWS 2014), riparian zone continuity was largely natural, and riparian zone modification was also largely natural. The majority of the impacts were flow related (quantity). Woody abundance and cover appears to be stable over the last 50 years (1964 to 2019). The present state has an overall PES score of 83.5% (category B, which is largely natural). The site is mostly natural in terms of riparian vegetation but with some presence of alien annual weeds.

Figure 8-11: (a) View from the left bank, (b) boulder and cobble along the edge of the slow riffle, (c) reeds growing on elongated boulder and riffle high points, (d) cobble and sand matrix out of current, (e) coarse sand trapped in between cobbles in riffle

Flow was visually rated as very high, with high availability of stable substrates restricted to deep areas during this high flow sampling event. Water in the stream was categorised as cool-warm alkaline freshwater. The water colour was clear to light brown, with cobbles-boulders the dominant habitat. Instream habitat was rated as high, and the inundation period of wadeable habitat unknown. Six sampling efforts were carried out limited to shallower flows in the channel. Boulders and cobbles were the dominant substrate, with a high

variety of hydraulic biotopes, velocities and depth classes present, but not wadeable. Habitat heterogeneity at the site was high, but habitat sampled was rated moderate to high. Habitat cover (interstitial spaces) was considerable in the accessible fast flowing boulder-cobble biotopes. The invertebrates were in a C category with a MIRAI score of 63% in 2021. Taxa considered sensitive to water quality (e.g. Heptageneiidae, Tricorythidae, Philopotaamidae) dominated the community, as did those associated with moderate to fast flows. They are frequently encountered at the site during electrofishing (Robin Petersen 2018, Pers. Comm., 11 September 2021). SASS records presented less frequent encounters.

Nutrient pollution causes a decline in biodiversity, through both a loss in species and through increased dominance of certain primary producers (Barker 2006; Cardinale 2011; Nie et al. 2018). Zinc was in a "poor" classification LUVU-A91K-OUTPO, which along with mercury, cadmium, copper, and lead are the most important heavy metal pollutants that affect the aquatic environment and health of fish (Authman et al. 2015). At the LUVU-A91K-OUTPO site the ecological category of a C for fish was under estimated because of high flows which limited sampling effort and was not attributed to large modification of habitats. Sampling conditions were very high flow, with deeper fast flowing sections that were wadeable during low flow. Habitat heterogeneity was high with cobble-boulder substrates dominant and different velocity-depth classes. Matumi root wads were inaccessible due to high flow. The sampling time was limited.

The PES and REC was a **C** category. The EWRs proposed are summarised in **Table** 8-8. Sustained perenniality of this river (from the established EWRs **Figure** 8-12) will ensure that the ecosystem becomes sustainable, a recovery from present conditions and will help maintain the wellbeing of the Limpopo Basin ecosystem. This site occurs below a major dam that is able to maintain or on occasion augment the base flows of the river.

Rive	r			S	ite			nMA	R (1	0°m	°)	%Dr	ough	it %B	aseflow	s	%Floods	%Total
Luvuvł	hu	LL	JVU	-A91	IK-O	UTF	0		560			12	2.29		24.1		15.97	40.06
Oct	Nov	v D	ec J	an F	eb N	/lar /	pr M	lay Ju	n Ju	ul Au	ig Se	≥p			Natu	ural Flo	ows	
0.1 20.4	38.	1 82	2.8 33	81.4 7	75.9 4	93.0 19	90.9 3	1.6 16	.6 10	.9 10	.3 10	20	0.0					
1 13.0 5 9.2	30.	1 74 3 40	1.1 25 0.5 11	58.2 38	57.9 30 33.0 1	06.7 13 52.8 10	38.4 2 ⁻ 00.7 16	1.0 16 6.7 10	.2 10 .6 9.	.1 9. 0 7.	29 88	.7 18	0.0			Ι		
10 8.5	12.9	9 34	.2 6	7.9 12	24.1 9	2.8 3	9.3 1	3.8 9.	3 7.	9 6.	9 7	.3 16	0.0			T		
15 7.6 20 7.2	11.4	4 30 3 23	0.2 5 0.4 3	3.6 8 9.2 7	8.2 8 9.1 6	1.3 3 7.7 2	3.1 1 ⁻ 5.5 1 ⁻	1.8 8. 1.0 7.	37. 96.	0 6. 6 6.	3 6 1 6	.5 14	0.0					
30 6.2	9.1	1 16	6.7 3	0.2 5	9.0 4	7.1 1	7.3 9	.8 7.	3 6.	1 5.	5 5	.4 10	0.0			×		
40 5.3 50 5.0	7.5	5 11 3 9.	.3 2	0.7 3 6.6 2	2.2 2 3.2 2	6.6 1 2.2 1	4.4 9 2.3 8	.2 6.	8 5. 3 5.	4 4. 1 4.	8 4 5 4	.9 .3 ⁸	0.0			×		
60 4.5	6.2	2 8	.3 1	3.0 1	6.3 1	1.2 1	0.4 6	.9 5.	5 4.	6 4.	0 4	.0 6	0.0					
70 3.5	5.4	1 6.	.9 1	0.3 1	2.1 9	9.7 8	3.3 6	.1 4.	7 4.	2 3.	8 3	.4 4	0.0					
80 3.1	4.7	6. 5.	.2 7	.0 9 6.9 8	3.1 3.5	7.2 (5.9 5 6.4 4	.1 4. .8 4.	3 3. 1 3.	o 3. 4 3.	2 3 1 2	.0 20	0.0			Ţ		ě.
90 2.7	3.6	5 5.	.1 6	6.4	7.0	6.6	5.9 4	.5 3.	7 3.	3 2.	9 2	.7	0.0	-		_		
95 2.5 99 2.0	3.3	3 3. 7 3.	.4 5	5.1 £	5.9 ±	5.7 £	5.1 3 3.8 2	.8 3. .6 2.	3 2. 4 1.	8 2. 9 2.	7 <u>2</u> 2 1	.4 .9			or May U	Dec 🔜	lan 📕 Feb 📕 N	/lar
99.9 2.0	2.7	7 3.	.0 2	2.8	4.0 3	3.9 3	3.2 2	.0 2.	3 1.	6 1.	6 1	.6			pi 📕 May 📕 J	un 📕	iui 📕 Aug 📕 3	ep
	_		_									-						
0.1 16	.9 :	Nov 32.6	Dec 78.0	Jan 328.8	Feb 785.5	Mar 485.5	Apr 184.2	May 27.5	Jun 11.6	Jul 7.6	Aug 6.1	Sep 7.0			Pr	esent	Flows	
1 9.	.3 2	22.3	66.8	250.5	357.7	305.1	129.2	17.2	11.1	6.7	6.1	6.6	200.0					
5 5.	.9	16.2 9.8	34.5 29.5	109.3 61.7	180.3	143.2 86.7	91.8 32.4	11.8 8.5	7.2	5.4 4.8	4.5	4.7	160.0					
15 4.	.6	7.8	23.7	45.1	83.4	75.6	27.8	7.8	5.1	4.2	3.6	3.9	140.0					
20 4.	.2	7.2	19.4 12.6	31.6 23.2	70.0 54.9	60.1 42.0	20.1	7.3 6.1	4.8	3.8	3.4	3.4	120.0			_		
40 2.	.9	4.6	8.3	15.6	27.4	22.6	10.2	5.8	4.0	3.1	2.5	2.6	100.0					
50 2. 60 2.	.8	4.2 3.4	6.5 5.1	13.0 9.2	17.6	15.4 8.6	8.2	4.8	3.7	2.8	2.4	2.3	80.0				<	
70 1.	.8	3.1	4.3	6.1	8.3	6.4	5.2	3.6	2.7	2.2	1.9	1.7	40.0			*		
80 1.	.6	2.5	3.4	4.8	5.8	4.6	4.1	3.0	2.3	2.0	1.6	1.4	20.0		T		× ·	
85 1.	.5	2.3	3.2	4.0	5.2	4.2	3.8	2.7	2.2	1.7	1.5	1.3	0.0					
95 1.	.0	1.6	1.8	2.7	3.4	3.3	2.8	2.1	1.6	1.3	1.2	1.0			Oct 📕 Nov 📗	Dec	📕 Jan 📕 Feb	Mar
99 0.	.8	1.3	1.5	1.6	2.2	2.7	2.0	1.3	1.2	0.8	0.9	0.7			Apr 📕 May	Jun	📕 Jul 📕 Aug	Sep
0.0								0.0			5.0	0.0						
Oct	:	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep				E- EI	0.W/S	
0.1 9.	.991	7.267	13.476	16.331	35.51	1 16.90	7 10.136	6.519	6.340	5.838	5.38	5.13	200.0			E- 11	0.173	
5 9.	.246	7.232	13.469	16.310	35.42	5 16.87	2 10.105	6.506	6.302	5.803	5.352	2 5.10	5 180.0					
10 8.	486	7.123	13.218	16.221	35.14	1 16.81	3 10.065	6.487	6.242	5.737	5.305	5 5.03	160.0					
20 7.	.213	6.888	12.794	15.872	33.250	4 16.66	9.993 1 9.872	6.396	6.132 5.975	5.614	5.04	4.92	140.0					
30 6.	.243	6.340	11.147	14.758	8 28.40	5 16.38	9.541	6.294	5.267	4.884	4.558	4.25	100.0					
40 5.	.324	5.337	9.910	13.880	24.69	15.80	9.072	6.063 5,707	4.383	3.908	3.878	3 3.53	80.0					
60 3.	.775	3.412	6.573	10.990	14.88	7 11.15	2 6.873	5.104	2.811	2.469	2.426	6 2.230	60.0					
70 2.	.833	2.728	4.772	8.871	10.01	9 9.65	5.338	4.239	2.262	2.007	1.96	1.84	40.0					
85 2.	.280	2.331	2.659	3.345	4.31	4.38	3 3.386	2.626	1.904	1.709	1.659	1.62	20.0		111 111 1111 1111	× *		
90 2.	.234	2.315	2.659	3.345	4.31	3.58	3.118	2.229	1.860	1.672	1.630	1.60	1		Oct New	Dec	lan 🗖 🗖	Mar
95 2.	.022	2.315	2.659	3.345	4.310	5 3.58	3.118	1.999	1.834	1.648	1.609	7 1.592	2		Apr May	Luc	det en lui	Sep
99.9 2	.013	2.315	2,659	2.830	4.02	3.58	3 3.118	1.920	1.828	1.588	1.53	1.576	3		мрт 💼 титау	Jun	- Jui - Aug	- 30p

Table 8-8: Summary of EWRs for a C category at LUVU-A91K-OUTPO

Figure 8-12: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C) EWR scenario for the LUVU-A91K-OUTPO site. (The x in the box and whisker plots shows the mean value).

8.5 Shingwedzi River site SHIN-B90H-POACH

The Shingwedzi River is located in the Kruger National Park (KNP) at Poachers Corner (**Figure 1-1**). The river is naturally seasonal to perennial in the upper reaches where the EWR site is located. The lower reaches (especially in Mozambique) are ephemeral with almost no flows year round and large floods during summer. Abstractions for irrigation and domestic water use occur outside the KNP with the Makuleke Dam the largest. Significant transmission losses and alluvial storage take place in the lower reaches of the river.

Figure 8-13: Mean monthly hydrology (discharge: Mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PRS) and base flow separated (BF)) for the Shingwedzi River (SHIN-B90H-POACH)

The current and historical water quality data were compared. All salt and nutrient levels were higher than the historical average but lower than the 75th percentile.

The Shingwedzi River is incised into the surrounding landscape with a very narrow floodplain. The EWR site is located in the lower foothills (**Table** 8-9). Pools form along the gentler gradients with wide shallow slow flowing water. Coarse sand and fine gravel dominate the bed material (**Figure** 8-14). The left bank is steep with good tree cover and composed of fine sand and silt. The right bank is composed of various levels of sand and gravel bars forming various flood levels.

Table 8-9: Slope, geozone and discharge measured at SHIN-B90H-POACH

Site code	Latitude	Longitude	Date	Slope	Geozone	Discharge (m³/s)	
SHIN-B90H- POACH	-23.221944	31.554917	01/05/2021	0.00011	Lower foothills	0.01	

The Shingwedzi River, at the site, was mixed bedrock and alluvial and mostly with no marginal vegetation or scattered pockets of low shrub or sedge. Banks were well wooded in places, notably near or associated with deeper pools, possibly perennial pools. The mixed bedrock/gravel riffle areas supported a notable population of *Gomphocarpus fruticosus* but this area was also influenced by the confluence of a small tributary to the Shingwedzi. The extensive gravel flood bench was sparse, mostly unvegetated with some shrubs, notably *Gymnosporia senegalensis*, a species associated with seasonal or drier conditions. Pool edges supported the only marginal zone vegetation, mixed woody (*Nuxia oppositifolia, Vachellia xanthophloea, Phoenix reclinate* and *Hyphaene coriacea*) and non-woody, mostly *P. mauritianus and Cyperus sexangularis*. The macrochannel bank supported tall phreatophytic trees where pools persisted the longest or were perennial. Dominant species included *Spirostachys africana, P. violacea, C. imberbe and Diospyros mespiliformis*.

The site occurs along sub-quaternary B90H-00145. This sub quaternary was assessed as a category **B** overall (Largely natural; DWS 2014), riparian zone continuity was largely natural, and riparian zone modification was also largely natural. The majority of the impacts were flow related (quantity). From 1942 to 2016 in-channel pools seem to have expanded/deepened, but woody vegetation density and distribution appears stable along the main channel and has increased slightly along smaller tributaries. The present state has an overall PES score of 83.0% (category B, which is largely natural). The site is mostly natural in terms of riparian vegetation but with some presence of alien annual weeds, particularly where flood disturbance occurs.

Figure 8-14: (a) View from the right bank (gravel on the flood bench in the foreground, (b) well vegetated banks and sandy channel, (c) view of the sandy channel from the left bank, (d) sandy lee deposit behind bedrock core island

Flow was visually rated as low, with moderate habitat diversity. The water colour was light brown to clear, with sand-gravel substrates dominant. A rapid downstream from the bridge culverts provided some bedrock substrate in moderate to fast flows. The rest of the substrates in the channel was dominated by coarse

sand-gravel. The water during the 2021 survey was categorised as cool, alkaline freshwater. Six sampling efforts were carried out, limited in terms of substrates, velocity classes and hydraulic biotopes. Habitat heterogeneity at the site was rated as moderate. Cover for aquatic invertebrates on the bedrock was very limited, but in the stones out of current effort, cover was moderate to high. The bulk of the riverbed was dominated with sand-gravel. Conditions in the Shingwedzi River at the sampling site was categorised as largely natural to moderately impaired, with a MIRAI score of 79% a B/C category. The Shingwedzi is annually restricted to subsurface flow regulated by groundwater inputs, while surface water is mostly restricted to isolated pools. Taxa expected based on historical data and available biotopes were mostly present in the 2021 sample.

Nutrient pollution causes a decline in biodiversity, through both a loss in species and through increased dominance of certain primary producers (Barker 2006; Cardinale 2011; Nie *et al.* 2018). Zinc was in a "poor" classification SHIN-B90H-POACH, which along with mercury, cadmium, copper, and lead are the most important heavy metal pollutants that affect the aquatic environment and health of fish (Authman *et al.* 2015). O'Brien (2013) obtained the same ecological status for fish at SHIN-B90H-POACH=D. This implies that there was neither an improvement nor a worsening of the ecological status of the fish communities at these sites. Rivers that remain in Classes D and E have serious consequences on the resilience of the river systems, which threatens the health of fish communities (Evans *et al.* 2021). Sampling conditions were moderate to low flow, with pool habitats and flow over dominant. Stones biotopes sampled in the vicinity of the bridge, dominated by bedrock.

The PES and REC were a **C** category. The established EWR will allow the river to remain in its seasonal state, but with improved flows from present (**Table** 8-10, **Figure** 8-15).

Table 8-10: Summary of EWRs	for a C category at SHIN-B90H-POACH
-----------------------------	-------------------------------------

		RI	/er					5	ite					AR (10°m	')	%Dr	ougnt		%Baseflow	S %	-100dS	% I Otal
	Sh	ning	wed	lzi		S⊦	ΗN·	-B90)H-F	POA	СН			87	,		0	.93		15.57	1	6.34	31.91
_																							
-	0.1 2	t	Nov	Dec 33.0	Jan	Feb) M	1ar A	opr I	May .	Jun	Jul Ai	Jg Si	ep 8				Natura	Flow	S			
	1 1	.7	6.3	27.1	152.0	135.	.1 12	25.6 1	9.9	2.1	2.0	1.9 1	.8 1	.7 60	.0								
	5 1 10 0	0.7	3.1	7.8	51.5 8.4	49.5	5 20 0 7	0.9 3	3.9 1.4	1.2	1.2	1.2 1 0.8 0	.1 1	.1 50	.0			T					
	15 0).6	1.3	2.0	5.4	10.5	5 5	5.0 1	1.1	0.7	0.7	0.7 0	.7 0	.7 40	.0								
	30 0).5).3	0.9	1.4 0.9	3.0	2.1	1	.3 ().8).6	0.6	0.6	0.5 0	.5 0	.3	0			*					
	40 0).2	0.3	0.7	0.9	0.9).5 ().4	0.3	0.3	0.3 0	2 0	.2 30	.0			×					
	60 C).1	0.2	0.3	0.3	0.4	0).2 ().2	0.2	0.2	0.2 0	.1 0	.1 20	.0				^				
_	70 0).1	0.1	0.2	0.2	0.2	0	0.2 ().1	0.1	0.1	0.1 0	1 0	1 10	.0			T	т				
	85 0).1).1	0.1	0.1	0.1	0.2	0).1 ().1).1	0.1	0.1	0.1 0	.1 0	.1 0	.0		<u> </u>	×.	×				
_	90 0	0.1	0.1	0.1	0.1	0.1	0	0.1 ().1	0.1	0.1	0.1 0	.1 0	.1			Oct 📕	Nov 🔳 Dec	📒 Jan	Feb Mar			
	99 C).0	0.0	0.0	0.0	0.0	0	0.0 ().0	0.0	0.0	0.0 0	.0 0	.0			Apr 📕 I	May 🔳 Jun	lut 📕	📕 Aug 📕 Sep			
_ <u></u>	99.9	0.0	0.0	0.0	0.0	0.0	0).0 (0.0	0.0	0.0	0.0 0	.0 0	.0									
	0.1	Oct	Nov	De	c Ja	an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep				Pres	sent Fl	ows			
	1	1.5	6.1	26.	9 15	1.8 1	134.9	125.4	19.8	1.9	1.9	1.0	1.6	1.5	60.0								
	5 10	0.8	2.9	7.5	5 51 7 8	1.3	49.2 34.8	20.7	3.7	1.1	1.1	1.0	1.0	0.9	50.0				т				
	15	0.5	1.1	1.8	3 5	.1	10.3	4.8	0.9	0.6	0.6	0.6	0.5	0.5	40.0								
	30	0.4	0.8	1.2	2 2 3 1	.7	5.4 1.9	2.1 0.9	0.6	0.5	0.5	0.5	0.4	0.4	40.0				×				
	40	0.2	0.3	0.6	30 10	.7	0.7	0.5	0.3	0.2	0.2	0.2	0.2	0.2	30.0								
	60	0.1	0.1	0.3	3 0	.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	20.0			~					
	70	0.1	0.1	0.1	0	.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	10.0								
	85	0.0	0.1	0.1		.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0			_ <u>*</u> * <mark>-</mark>	2	<			
	90	0.0	0.0	0.1		.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0		Ort	Nov	Dec	lan 📕 Feb 📕 Mar			
-	99	0.0	0.0	0.0		.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			Apr	May	Jun 📕	Jul 📕 Aug 📕 Sep			
в	99.9	0.0	0.0	0.0) 0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0									
		Oct	Nov	/ De	c Ja	an	Feb	Mar	Apr	May	/ Jun	Jul	Aug	Sep					E Elow	-			
	0.1	0.34	6 0.3	78 0.4	84 4.	.726	7.781	3.021	0.62	0.42	2 0.43	1 0.414	0.38	0.37	1 60.000				L-110W	5			
	5	0.34	5 0.3	77 0.4	83 4.	.705	7.751	2.998	3 0.61	9 0.42	21 0.43	0 0.412	0.38	7 0.36	9 50.000								
	10 15	0.34	3 0.3 2 0.3	75 0.4 72 0.4	81 4.	.297 .161	7.688	2.964	0.61	5 0.41 2 0.41	0.42 0.42	6 0.409 1 0.403	0.383	3 0.36 9 0.36	2								
	20	0.33	8 0.3	68 0.4	75 2.	.961	5.613	2.263	0.60	0.40	08 0.41	4 0.396	0.373	3 0.35	40.000								
	40	0.28	4 0.3	0.4	42 0.	.449	0.889	0.530	0.55	3 0.27	76 0.25	5 0.254	0.32	3 0.23	30.000								
	50 60	0.16	1 0.2	08 0.4	09 0.	.504	0.545	0.336	0.25 0.20	0.20	0.20	4 0.190	0.179	0.16	2 20.000								
	70	0.10	1 0.1	20 0.1	83 0.	.228	0.242	0.157	0.14	7 0.13	34 0.13	1 0.119	0.11	1 0.09	1 10.000								
	80	0.08	2 0.0 2 0.0	0.0 39 0.0	181 0. 129 0.	.149 .125	0.156	0.116	0.10	0.08 0.05	0.08 0.05	6 0.074 5 0.054	0.060	4 0.03	4			<u> </u>	×				
	90	0.02	4 0.0	29 0.0	29 0.	.093	0.123	0.097	0.03	85 0.03	35 0.04	1 0.039	0.03	3 0.02	8 0.000		Cost	Nov	Dec	lan Eeb Mar			
~	99	0.02	4 0.02	27 0.0	128 0.	.040	0.040	0.082	0.03	34 0.02	24 0.02	5 0.025	0.02	4 0.02	5		Apr	May	Jun 📕	Jul Aug Sep			
C	99.9	0.02	3 0.0	27 0.0	26 0.	.031	0.030	0.031	0.03	0.02	23 0.02	3 0.023	0.023	3 0.02	3								

Figure 8-15: Exceedance tables and box and whisker charts for (A) natural, (B) present and (C) EWR scenario for the SHIN-B90H-POACH site. (The x in the box and whisker plots shows the mean value).

Summary of Eco-Categorisation

The PES of invertebrates, fish and vegetation were determined using the DWS PES models and are given in **Table** 8-11.

Table 8-11 PES and REC for invertebrates, fish and vegetation for the 5 LIMCOM study sites

E Elow oite	Diver	Inverte	ebrates	Fi	sh	Vegetation		Overall	
E-Flow Site	River	PES	REC	PES	REC	PES	REC	PES	REC
LEPH-A50H-SEEKO	Lephalala River	C/D	С	D	С	С	С	С	С
MOGA-A36D-LIMPK	Mogalakwena River	D	D	D	D	С	С	С	С
SAND-A71K-R508B	Sand River	С	С	C/D	С	B/C	С	С	С
LUVU-A91K-OUTPO	Luvuvhu River	С	С	С	С	В	С	С	С
SHIN-B90H-POACH	Shingwedzi River	B/C	С	D	С	В	С	С	B/C

8.6 Ecological Water Requirements

The EWRs (**Table** 8-12) are provided in a similar format to that used by the DWS in Sections 0 to 8.6.4 and were taken directly from the **E-Flows for the Limpopo River Basin – Environmental Flow Determination** for the Limpopo Basin Report (O'Brien *et al.* 2022b), with permission from USAID and IWMI.

Table 8-12 Summary of EWRs for the 5 LIMCOM study sites

Rivers	E-Flow site	nMAR (10 ⁶ m³)	%Drought	%Baseflows	%Floods	%Total
Lephalala River	LEPH-A50H-SEEKO	142	8.79	18.09	21.02	39.11
Mogalakwena River	MOGA-A36D-LIMPK	243	13.98	19.24	17.82	37.06
Sand River	SAND-A71K-R508B	74	0	9.02	23.41	32.43
Luvuvhu River	LUVU-A91K-OUTPO	560	12.29	24.1	15.97	40.06
Shingwedzi River	SHIN-B90H-POACH	87	0.93	15.57	16.34	31.91

EWRs for LEPH-A50H-SEEKO

The EWRs for LEPH-A50H-SEEKO are given in **Table** 8-13. The EWRs are to maintain PES = REC of a C category.

Table 8-13 Summary of EWRs for LEPH-A50H-SEEKO

Annual Flows (Mill. cu. m or index values):

MAR	=	142.231
S.Dev.	=	117.15
CV	=	0.824
Q75	=	3.01
Q75/MMF	=	0.254
BFI Index	=	0.304
CV(JJA+JFM) Index	=	1.896
(,		
REC	=	С
REC Total EWRs	=	C 55.623 (39.11 %MAR)
REC Total EWRs Maint. Low flow	= =	C 55.623 (39.11 %MAR) 25.727 (18.09 %MAR)
REC Total EWRs Maint. Low flow Drought Low flow	= = =	C 55.623 (39.11 %MAR) 25.727 (18.09 %MAR) 12.503 (8.79 %MAR)

Monthly Distributions (cu.m./s)

Distribution Type: Lowveld

		Natural flows		Modified flows (EWR)						
Month	Maan	50		Low	flows	High flows	Total flows			
	wear	30	Cv	Maint.	Drought	Maint.	Maint.			
Oct	1.212	2.791	0.859	0.568	0.258	0.612	1.18			
Nov	2.457	4.062	0.638	0.644	0.301	0.632	1.276			
Dec	4.174	3.985	0.356	0.726	0.359	0.612	1.338			
Jan	7.356	7.019	0.356	0.911	0.444	1.758	2.669			
Feb	12.476	20.697	0.686	1.277	0.615	5.756	7.033			
Mar	9.47	11.779	0.464	1.104	0.533	1.758	2.862			
Apr	6.237	5.516	0.341	0.98	0.476	0.632	1.612			
May	3.986	2.641	0.247	0.844	0.413	0	0.844			
Jun	2.916	1.909	0.253	0.807	0.397	0	0.807			
Jul	2.023	1.254	0.231	0.727	0.359	0	0.727			
Aug	1.392	0.776	0.208	0.661	0.329	0	0.661			
Sep	1.019	0.53	0.2	0.577	0.291	0	0.577			

8.6.1 EWRs for MOGA-A36D-LIMPK

The EWRs for MOGA-A36D-LIMPK are given in **Table** 8-14. The EWRs are to maintain PES = REC of a C category.

Table 8-14 Summary of EWRs for MOGA-A36D-LIMPK

Annual Flows (Mill. cu. m or index values):

MAR	=	242.551
S.Dev.	=	221.975
CV	=	0.915
Q75	=	5.26
Q75/MMF	=	0.26
BFI Index	=	0.341
CV(JJA+JFM) Index	=	2.143
REC	=	с
Total EWRs	=	89.884 (37.06 %MAR)
Maint. Low flow	=	46.671 (19.24 %MAR)
Drought Low flow	=	33.901 (13.98 %MAR)
Maint High flow		

Monthly Distributions (cu.m./s)

Distribution Type: Lowveld

		Natural flows		Modified flows (EWR)						
Month	Maan	50		Low	flows	High flows	Total flows			
	wear	30	Cv	Maint.	Drought	Maint.	Maint.			
Oct	2.15	2.356	0.409	1.091	0.9	0.677	1.768			
Nov	7.478	16.335	0.843	1.388	0.9	2.356	3.744			
Dec	9.8	12.575	0.479	1.464	0.95	0.677	2.141			
Jan	15.048	24.097	0.598	1.754	1.1	2.28	4.034			
Feb	23.734	44.437	0.774	2.366	1.1	10.565	12.931			
Mar	12.657	20.061	0.592	1.772	1.2	0.677	2.449			
Apr	7.967	11.598	0.562	1.608	1.25	0	1.608			
May	4.594	4.568	0.371	1.406	1.19	0	1.406			
Jun	3.231	1.777	0.212	1.37	1.18	0	1.37			
Jul	2.651	1.18	0.166	1.281	1.16	0	1.281			
Aug	2.251	0.844	0.14	1.202	1.07	0	1.202			
Sep	1.961	0.665	0.131	1.129	0.9	0	1.129			

8.6.2 EWRs for SAND-A71K-R508B

The EWRs for SAND-A71K-R508B are given in **Table** 8-15. The EWRs are to maintain PES = REC of a C category.

Table 8-15 Summary of EWRs for SAND-A71K-R508B

Annual Flows (Mill. cu. m or index values):

MAR	=	74.191
S.Dev.	=	231.002
CV	=	3.114
Q75	=	0
Q75/MMF	=	0
BFI Index	=	0.192
CV(JJA+JFM) Index	=	7.399
REC	=	с
Total EWRs	=	24.061 (32.43 %MAR)
Maint. Low flow	=	6.689 (9.02 %MAR)
Drought Low flow	=	0 (0 %MAR)
Maint. High flow	=	17.372 (23.41 %MAR)

Monthly Distributions (cu.m./s)

Distribution Type : Lowveld

		Natural flows		Modified flows (EWRs)						
Month	Maan	50	\sim	Low	flows	High flows	Total flows			
	wear	30	Cv	Maint.	Drought	Maint.	Maint.			
Oct	0.39	1.418	1.357	0.104	0	0	0.104			
Nov	1.618	2.735	0.652	0.163	0	0.72	0.883			
Dec	2.147	2.754	0.479	0.188	0	0.697	0.885			
Jan	6.078	17.105	1.051	0.372	0	0.697	1.069			
Feb	12.955	76.681	2.447	0.72	0	3.324	4.044			
Mar	3.614	12.492	1.291	0.32	0	0.697	1.017			
Apr	1.06	2.201	0.801	0.195	0	0.72	0.915			
May	0.405	0.857	0.789	0.141	0	0	0.141			
Jun	0.262	0.757	1.114	0.119	0	0	0.119			
Jul	0.199	0.675	1.266	0.099	0	0	0.099			
Aug	0.167	0.623	1.393	0.086	0	0	0.086			
Sep	0.158	0.596	1.451	0.078	0	0	0.078			

8.6.3 EWRs for LUVU-A91K-OUTPO

The EWRs for LUVU-A91K-OUTPO are given in **Table** 8-16. The EWRs are to maintain PES = REC of a C category.

Table 8-16 Summary of EWRs for LUVU-A91K-OUTPO

Annual Flows (Mill. cu. m or index values):

MAR	=	559.847
S.Dev.	=	544.563
CV	=	0.973
Q75	=	12.62
Q75/MMF	=	0.271
BFI Index	=	0.32
CV(JJA+JFM) Index	=	1.993
REC	=	с
Total EWRs	=	224.297 (40.06 %MAR)
Maint. Low flow	=	134.904 (24.10 %MAR)
Drought Low flow	=	68.792 (12.29 %MAR)
Maint High flow		

Monthly Distributions (cu.m./s)

Distribution Type: Lowveld

		Natural flows		Modified flows (EWRs)						
Month	Maan	50		Low	flows	High flows	Total flows			
	Mean	30	Cv	Maint.	Drought	Maint.	Maint.			
Oct	5.363	2.72	0.189	3.07	1.79	3.948	7.018			
Nov	8.402	5.878	0.27	3.363	2.13	1.54	4.903			
Dec	15.559	14.613	0.351	3.786	2.22	3.948	7.734			
Jan	32.726	49.397	0.564	5.018	2.74	5.439	10.457			
Feb	55.759	99.984	0.741	7.075	2.94	12.866	19.941			
Mar	45.31	70.986	0.585	6.315	2.96	5.439	11.754			
Apr	22.865	32.278	0.545	5.113	2.92	1.54	6.653			
May	8.66	4.446	0.192	4.042	1.98	0	4.042			
Jun	6.414	2.555	0.154	3.837	1.8	0	3.837			
Jul	5.301	1.902	0.134	3.492	1.61	0	3.492			
Aug	4.717	1.659	0.131	3.257	1.58	0	3.257			
Sep	4.711	1.879	0.154	3.184	1.57	0	3.184			

8.6.4 EWRs for SHIN-B90H-POACH

The EWRs for SHIN-B90H-POACH are listed in **Table** 8-17. The EWRs are to maintain a REC of a B/C category.

Table 8-17 Summary of EWRs for the SHIN-B90H-POACH site

Annual Flows (Mill. cu. m or index values):

MAR	=	86.618
S.Dev.	=	200.484
CV	=	2.315
Q75	=	0.32
Q75/MMF	=	0.044
BFI Index	=	0.214
CV(JJA+JFM) Index	=	4.722
REC	=	B/C
REC Total EWRs	=	B/C 27.639 (31.91 %MAR)
REC Total EWRs Maint. Low flow	=	B/C 27.639 (31.91 %MAR) 13.487 (15.57 %MAR)
REC Total EWRs Maint. Low flow Drought Low flow	= = =	B/C 27.639 (31.91 %MAR) 13.487 (15.57 %MAR) 0.806 (0.93 %MAR)

Distribution Type: Lowveld

	Natural flows			Modified flows (EWRs)				
Month	Mean	SD	CV	Low flows		High flows	Total flows	
				Maint.	Drought	Maint.	Maint.	
Oct	0.32	0.404	0.472	0.229	0.022	0	0.229	
Nov	0.721	1.27	0.68	0.255	0.027	0	0.255	
Dec	2.035	5.284	0.969	0.336	0.026	0	0.336	
Jan	8.595	27.053	1.175	0.797	0.03	1.51	2.307	
Feb	11.65	43.043	1.527	1.079	0.029	2.507	3.586	
Mar	7.07	28.174	1.488	0.779	0.03	1.51	2.289	
Apr	1.441	5.594	1.498	0.412	0.031	0	0.412	
May	0.375	0.409	0.408	0.274	0.022	0	0.274	
Jun	0.366	0.407	0.429	0.273	0.023	0	0.273	
Jul	0.343	0.381	0.415	0.257	0.022	0	0.257	
Aug	0.325	0.364	0.417	0.246	0.022	0	0.246	
Sep	0.318	0.355	0.432	0.241	0.023	0	0.241	
9 DATA TAKEN FORWARD INTO NEXT PHASE OF WORK

For the WRCS, EWR information is required at a wider resolution so that the consequences of water resource developments, and other relevant scenarios, can be understood up- and downstream of the EWR sites, and on significant tributaries. As such, a water balance will be undertaken that links all the nodes with one another in a downstream direction, so that the consequences of changes in flow on the PES of the rivers can be considered from upstream to downstream, and in the incremental tributaries. Most importantly, the WRCS analysis will provide the information necessary for the LIMCOM study to understand what the consequences are of water resource developments planned in South Africa on river flow into the Limpopo River. The outcomes of the WRCS analyses are provided in monetary terms by understanding the changes in flow and ecological condition through a socio-economic cost and benefit analysis.

The EWRs from the DRIFT assessment and the LIMCOM study (O'Brien *et al.* 2022) will go forward into the WRCS process. There are 75 nodes and 19 of these are where detailed EWRs have been determined; 14 from this study and the five from the LIMCOM study. There are therefore 56 nodes that need EWRs for the WRCS process. The biophysical and hydrological characteristics of the rivers at the 75 nodes will be compared and the rivers will be grouped by similarity. Those with characteristics that are similar to a nearby EWR site will use the same EWR configuration as the EWR site. This may be a site on the same main-stem river or on a tributary with similar characteristics. The others will be generated using the Revised Desktop model (Birkhead et al. 2019).

The water balance using the EWR data for 75 nodes will be reported on in the Ecological Sustainable Baseline Configuration Report (DWS 2024, Report WEM/WMA01&02/00/CON/RDM/0224).

10 REFERENCES

- Adams, J., Cowie, M., van Niekerk, L. 2016. Assessment of completed ecological water requirement studies for South African estuaries and response to changes in freshwater inflow. Water Research Commission report KV 352/15.
- Athuman, M.M., Zaki, M.S., Khallaf, E.A., Abbas, H.H. 2015. Use of fish as bio-indicators of the effects of heavy metals pollution. *Journal of Aquaculture Research and Development* 06: 1-13.
- Barker, H.J. 2006. Physico-chemical characteristics and metal bioaccumulation in four major river systems that transect the Kruger National Park, South Africa. University of Johannesburg.
- Birkhead, D., Hughes, D., Kotze, D., Mackenzie, J., ZweZwe, N. 2019. Volume 1: RDRM refinement: background and description. Water Research Commission Report No. 2539/1/19.
- Cardinale, B.J. 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86-91.
- Department of Water Affairs. 2011. Procedures to develop and implement Resource Quality Objectives. Department of Water Affairs, Pretoria, South Africa.
- Department of Water and Sanitation. 2014. A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: [W5 (for example)]. Compiled by RQIS-RDM: <u>https://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx accessed on [22</u> January 2024].
- Dickens, C., O'Brien, G. 2020a. E-flows for the Limpopo River Basin, Inception Report. Report submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- Dickens, C., O'Brien, G., Magombeyi, G., Mukuyu, M.K., Ndlovu, B., Eriyagama, N., Kleynhans, N. 2020b.
 E-flows for the Limpopo River Basin: Basin Report. Report 2 submitted by the International Water
 Management Institute (IWMI) to the United States Agency for International Development (USAID).
- Dickens, C., O'Brien, G., Magombeyi, G., Mukuyu, M.K., Ndlovu, Stassen, G. 2020c. E-flows for the Limpopo River Basin: From Vision to Management. Report 2a submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- Dickens, C., O'Brien, G., Stassen, R, van der Waal, B., MacKenzie, J., Eriyagama, N., Villholth, K., Ebrahim, K., Wepener, G., Gerber, V., Kaiser, S., Diedricks, G. 2022a. E-flows for the Limpopo River Basin: Specialist Literature Review and Data. Report 3 submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- Dickens, C., O'Brien, G., Stassen, R, van der Waal, B., Villholth, K., Ebrahim, K., Erasmus, H., Herselman, S., Ebrahim, G., Magombeyi, M., Riddle, E., Petersen, R. 2022b. E-flows for the Limpopo River Basin: Present Ecological State – Drivers of Ecosystem Change. Report 4 submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- Dollar, E.S.J., Brown, C.A., Turpie, J.K., Joubert, A.R., Nicolson, C.R., Manyaka, S. 2006. The development of the Water Resource Classification System (WRCS). Volume 1. Overview and 7-step classification procedure. Joint CSIR and Department of Water and Forestry Report, Pretoria, South Africa. 70p.
- Evans, W., Downs, C.T., Burnett, M.J., O'Brien, G.C. 2021. Assessing fish community response to water quality and habitat stressors in KwaZulul Natal, South African. *African Journal of Aquatic Science*.
- Joubert, A.R., Brown, C.A., King, J.M., Beuster, H., Greyling, A. 2022. DRIFT: incorporating an eco-social system network and time series approach into environmental flow assessment. African Journal of Aquatic Science 47(3): 338-352.

- King, J.M., Brown, C.A. and Sabet, H. 2003. A scenario-based holistic approach to environmental flow assessments for regulated rivers. Rivers Research and Applications 19 (5-6). 619-640.
- Kleynhans, C.J. 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River (Limpopo system, South Africa). *Journal of Aquatic Ecosystem health* 5: 41-54.
- Kleynhans, C.J. and M.D. Louw. 2007. Module A: EcoClassification and EcoStatus Determination in River EcoClassification: Manual for EcoStatus Determination (version 2).Water Research Commission Report No. TT 329/08. Joint Water Research Commission and Department of Water Affairs and Forestry report, Pretoria, South Africa.
- Milan, D., Heritage, G., Entwistle, N., Tooth, S. 2018a. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel, in: Proceedings of the International Association of Hydrological Sciences. Presented at the Water quality and sediment transport issues in surface water - IAHS Scientific Assembly 2017, Port Elizabeth, South Africa, 10–14 July 2017, Copernicus GmbH, pp. 51–56. https://doi.org/10.5194/piahs-377-51-2018.
- Milan, D., Heritage, G., Tooth, S., Entwistle, N. 2018b. Morphodynamics of bedrock-influenced dryland rivers during extreme floods: Insights from the Kruger National Park, South Africa. GSA Bull. 130, 1825–1841. https://doi.org/10.1130/B31839.1
- Milan, D.J., Tooth, S., Heritage, G.L. 2020. Topographic, Hydraulic, and Vegetative Controls on Bar and Island Development in Mixed Bedrock-Alluvial, Multichanneled, Dryland Rivers. *Water Resour. Res.* 56, e2019WR026101. https://doi.org/10.1029/2019WR026101.
- Nie, J., Feng, H., Witherell, B.B., Alebus, M., Mahajan, M.D., Zhang, W., Yu, L. 2018. Causes, assessment and treatment of Nutrient (N and P) pollution in rivers, estuaries and coastal waters. *Current Pollution Reports* 4: 154-161.
- O'Brien, G. 2013. Specialist report: fish component. Limpopo River Basin Monograph. (LRBMS-81137945). Supplementary Report to Draft Final Monograph Report. Part of the Determination of the Present Ecological Status and Environmental Water Requirements Report. Prepared for LIMCOM with the support of GIZ.
- O'Brien, G., Dickens, C., Stassen, R, Kaiser, Diedricks, G., Kaiser, G., Barendse, C., Pearson, H., MacKenzie, J., Gerber, J., Petersen, S., Dlamini, V. 2022a. E-flows for the Limpopo River Basin: Present Ecological State of the Limpopo River – Ecological Response to Change. Report 5 submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- O'Brien, G., Dickens, C., Wade, M., Stassen, R., Diedricks, G., MacKenzie, J., Kaiser, A., van der Waal, B., Wepener, V., Villhoth, K., Ebrahim, G., Dlamini, V., Magombeyi, M. 2022b. E-flows for the Limpopo River Basin: E-flows for the Limpopo River Basin. Report 6 submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- O'Brien, G., Dickens, C., Wade, M., Stassen, R., Wepener, R., Diedricks, G., MacKenzie, J., Kaiser, A., van der Waal, B., Wepener, V., Villhoth, K., Ebrahim, G., Dlamini, V., Magombeyi, M. 2022c. E-flows for the Limpopo River Basin: Risk of Altered Flows to the Ecosystem Services of the Limpopo Basin. Report 7 submitted by the International Water Management Institute (IWMI) to the United States Agency for International Development (USAID).
- StepSA. 2018. CSIR MesoZone 2018v1 Dataset. CSIR, http://stepsa.org/socio_econ.html.

Appendix A. Executive Summary from the LIMCOM E-flows report (O'Brien et al. 2022b)

This executive summary was taken from the **E-Flows in the Limpopo River: E-flows report** (O'Brien *et al.* 2022b), with permission from USAID and IWMI. Cross-referencing was adjusted for compatibility in this EWR report. Readers interested in further details about the study are referred to the other reports listed for the Limpopo River E-flows project in **Section 1.4**.

The E-flows report documents the culmination of the project to determine the E-flows for the Limpopo River Basin. In the process several documents were produced (see **Section 1.4**) that include a description of the water resources and other important issues in the basin as well as the vision that management has for the basin (Report 2); a comprehensive review of literature and existing data (Report 3); the results of field surveys that document the present ecological state of both the drivers of change (Report 4); and the ecological responses to change (Report 5). The E-flows report (Report 6) brings together all that information to describe the E-flows themselves, the relationship between river flows and the river ecosystem and details which flows are necessary to keep the ecosystem in its present condition or better at some sites. The E-flows report is followed by a supporting document (Report 7) that describes the risk of altered flows to the ecosystem services of the Limpopo Basin. The E-flows report has greater application for consideration of trade-offs in relation to the human use of the river.

A total of 18 sites were identified that would adequately represent the river reaches of the Limpopo Bain (**Appendix Figure 1**). These sites were selected for purely biophysical, practical and data reasons and not because of their political location, the preponderance of sites located in South Africa being entirely due to the greater number of tributaries in that region and the availability of existing data. E-flows were also determined for those generally non-flowing rivers in Botswana, but no sites were used. Note that the Changane tributary that enters the Limpopo just above the estuary was excluded because it was found, during the Monograph study, to be saline and could be characterised more as a wetland than a flowing river.

In this study, the PROBFLO holistic E-flow determination and framework approach (O'Brien *et al.* 2018, **Appendix Figure 2**), was implemented to establish E-flows for 15 sites on the Limpopo Basin, while the results from the three previously determined e-flow sites on the Letaba and Olifants River were reviewed, and E-flows for an additional 5 sites were inferred (Ngotwane, Bonwapitse, Lotsana, Motloutse and Bubye Rivers). PROBFLO combines Relative-Risk Modelling (RRM) and the use of Bayesian Networks (BN) in a BN-RRM approach to determine: (1) the flow requirements of selected indicator components of ecosystems, (2) evaluate the synergistic effects of E-flow scenarios to ensure they are suitable in a holistic context and (3) characterise and evaluate the relative risk of flow and non-flow stressors to social and ecological water resources on regional scales to contribute to water resource sustainability management. This report contains the first two components of the PROBFLO approach to determine holistic E-flows, while the third component is reported in Report 7: "*Risk of altered flows to the ecosystem services of the Limpopo Basin*".

Appendix Figure 1: River sites identified in the E-flow assessment for the Limpopo Basin. E-flows were also determined for the generally dry tributaries in Botswana but no specific sites were used.

Appendix Figure 2: The PROBFLO approach followed for the determination of E-flows for the Limpopo River.

Step 1 - In this study was to identify and select sites representative of the rivers reaches in the basin. These sites are located in the lower reaches of major systems to represent the effects of altered flows in the upstream catchment. The first step of the E-flow determination process is to identify a suitable reach of river, and associated ecosystems that can be used to determine the E-flows for a wider reach of the Limpopo River or an important tributary. Criteria for site selection for the collection of data are normally based on biophysical characteristics, however this was varied and included representativeness of the reach considered, access to the site for bio-physical surveys, existing data especially hydrological, and local and regional land use or resource development scenarios (as noted above, site selection was done only using ecological and practical considerations and ignored political boundaries). Data from all of these sites is needed so that flow-ecosystem and non-flow stressor and ecosystem relationships can be determined. At this stage the vision for each river reach in terms of its protection vs. use/development must be considered.

Step 2 - is where the physico-chemical drivers of the ecosystem are described and their role in support of E-flows and the resulting ecosystem considered for each reach of river.

Step 3 - a range of ecosystem lines of evidence (LoEs) are used in this step to consider how the "drivers" characterised in previous steps now interact with or affect "responder" components of ecosystems. Here teams identify species, populations and community indicators that represent the ecosystem and their preferences for the volume, timing, duration and frequencies of river flows. These relationships can also include timing and duration of flows to ensure that they are aligned to seasonal life-cycle activities of indicator species. These are the holistic flow-ecosystem relationships that characterise a sustainable ecosystem and are captured in the E-flow determination.

Step 4 – with this data and considering the vision for the resource, the flow-requirement information is provided. The hydrologist thus obtains indicator requirements pertaining to the volume, timing, duration and frequency of flows for each site associated with drought, base low and high flows, freshets and floods. These requirements for E-flows are based on isolated indicator requirements alone and still need to be considered in an integrated holistic context in step 5.

Step 5 - the knowledge of the socio-ecological system representing each reach of river, and links between sites to represent upstream and downstream relationships, is used to evaluate the integrated risk of the preliminary E-flow requirements, to ensure that they meet the integrated ecosystem requirements. This is achieved using Bayesian Network (BN) probabilistic modelling methods.

Step 6 - all the flow indicator components of the ecosystem used to establish preliminary E-flow requirements are integrated into the BN. The same rules or conditional probability tables (represented as stacked area graphs) are integrated into the model and combined to represent ecosystem components using additional conditional probability tables. BNs are applied to determine probable risk of multiple flow and non-flow stressors to model endpoints that represent the ecosystem in an acceptable condition. The relative risk of natural, present and preliminary (indicator based) E-flow scenarios are evaluated.

Step 7 - the integrated risk to the ecological endpoints is evaluated to ensure that not only are the indicatorbased requirements determined, but requirements for the ecosystem in an integrated context are suitable to represent and balance the use and protection of the water resources. **Step 8** – the BN evaluation of risk of multiple stressors to the preliminary E-flows (from Step 6) are modelled resulting in E-flow requirements for the each site. This adaptive process can be applied through multiple iterations to result in a suitable "integrated, holistic" E-flow for each reach which is also integrated/synchronised between sites/reaches.

A detailed compilation of the physical drivers (Report 4: *Present Ecological State of the Limpopo River: Drivers of Ecosystem Change*) and the biological responses to these drivers (Report 5: *Present Ecological State of the Limpopo River: Ecological Responses to Change*) was used as input to the work that followed. An example of the hydrology, which is a key driver of ecosystem change, was used for each site is shown in **Appendix Figure 3**.

Appendix Figure 3: Example of site hydrology (above) – mean monthly hydrology (discharge m³/s) representing the natural (NAT), present day (PS) and natural baseflow separated (BF) for the Crocodile River. (Below) mean monthly hydrology in million cubic metres per annum (MCM) for the flow record from 1920 to 2010 in the Crocodile River

Following Step 2, which is the characterisation of the driver components (hydrology, water quality, geomorphology and hydraulics) for each site, fully described in Report 4: *Present Ecological State of the Limpopo River: Drivers of Ecosystem Change*, determination of the present ecological state of each ecological component (see **Appendix Figure 4**) was carried out during extensive field surveys and associated with existing literature, and detailed the indicator species, populations and communities identified to represent the ecosystem. This present ecological state data is used to determine the flows

necessary to sustain the ecosystem in a pre-defined condition, the preliminary E-flow requirements. This is Step 3 of PROBFLO.

The biological status quo data and information that makes up **Appendix Figure 4** is presented in Report 5: *Present Ecological State of the Limpopo River: Ecological Responses to Change*. An example of the relationship between flow and habitat suitability for fish is shown in Appendix Figure 5.

A summary of the full process to make use of the biophysical data to determine first, the isolated indicator based E-flows, and then the holistic E-flows, as outlined in the 7 Step procedure, is not presented here. However, the final results are shown below in **Appendix Table 2**.

Using these relationships, Step 4 is to determine the preliminary e-flow requirements for each of the biological components, to ensure there is always sufficient water, in each month of the year, to satisfy the biota. An example where the data for the fish, invertebrates and vegetation are all catered for is shown in **Appendix Table 1** (flood requirements are then added to this, as shown in **Appendix Table 2**.

The E-flows to maintain the wellbeing of the rivers selected to represent the Limpopo basin have been determined to contribute to the sustainability of the ecosystem. These E-flows would maintain a suitable balance between the abstraction or alteration of the flow regime and the protection requirements. The E-flows established in the study include drought flows and baseflow and high flows for all of the sites, which has contributed to the determination of the portion of total flows (mean annual runoff) required to sustain the ecosystems. In addition, freshet and flood flows from all sites are provided to support holistic management of flows in the rivers of the basin. These requirements are all considerably more than what is presently being provided in the rivers of the basin suggesting that existing abstraction and or alteration of instream flows must be managed to meet these E-flow requirements.

Appendix Figure 4: Present Ecological State classification using A-F Eco-Categorisation range for fish (A), invertebrates (B) and vegetation (C). Ecological Category (D) representing the vision for the sustainable use and protection of water resources in the Limpopo Basin.

- Appendix Figure 5: Flow-ecosystem relationship established in the study to represent the suitability of velocity-depth habitat characteristics for rehophillic indicator fish (*Labeo* spp.), associated with discharge based on hydraulic relationships between flows and velocitydepth habitats and species response data obtained in the study for the Limpopo River at LIMP-A41D-SPANW. Table represents relationships (left) which is graphically presented (right). Zero, low, moderate and high-risk ranks included.
- Appendix Table 1: Integrated monthly average base flow discharge (m³/s) requirements from the fish, invertebrates and vegetation indicator components for the CROC-A24J-ROOIB site.

Percentiles	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
20	4.0	9.0	9.0	9.0	9.0	9.0	9.0	4.0	4.0	4.0	4.0	4.0
50			7.0	8.0	8.0	8.0	8.0	8.0				
80	2.4	3.2	3.2	3.2	3.2	3.2	3.2	2.4	2.4	2.4	2.4	2.4
99.9	1.7	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8

Appendix Table 2: Summary of the E-flow statistics established in the study using indicator requirements for each site considered in the study. Note the E-flow requirements for the Groot Letaba River, Letaba River and the Olifants River have been extracted from formal gazettes and only tested in this study.

Rivers	E-flow site	nMAR (10 ⁶ m³)	%Drought	%Baseflows	%Floods	%Total	
Crocodile River	CROC-A24J-ROOIB	596	9.48	25.73	9.37	35.09	
Limpopo River	LIMP-A41D-SPANW	591	6.31	24.67	12.4	37.07	
Matlabas River	MATL-A41D-WDRAAI	40	1.04	10.64	39.23	49.86	
Lephalale River	LEPH-A50H-SEEKO	142	8.79	18.09	21.02	39.11	
Limpopo River	LIMP-A36C-LIMPK	801	3.03	23.15	11.35	34.51	
Mogalakwena River	MOGA-A36D-LIMPK	243	13.98	19.24	17.82	37.06	
Shashe River	SHAS-Y20B-TULIB	687	0	5.33	11.96	17.29	
		1684	2.6	16.15	8.12*	24.27#	
Limpopo River	LIMP-A71L-MAPUN			>2000 m³/s (3-5year flood for >7 days).			
Umzingwani River	UMZI-Y20C-BEITB	438	0	4.74	15.5	20.23	
Sand River	SAND-A71K-R508B	74	0	9.02	23.41	32.43	
Luvuvhu River	LUVU-A91K-OUTPO	560	12.29	24.1	15.97	40.06	
Mwenedzi River	MWEN-Y20H-MALAP	412					
		2792	1.16	10.46	1.63*	12.08#	
Limpopo River	LIMP-Y30D-PAFUR			>2000 m³/s (3-5year flood for >7 days).			
Shingwedzi River	SHIN-B90H-POACH	87	0.93	15.57	16.34	31.91	
Groot Letaba River	GLET-B81J-LRANC	441	***	***	***	42.53**	
Letaba River	LETA-B83A-LONEB	642	***	***	***	***	
Olifants River	OLIF-B73H-BALUL	1918	10.01	17.72	3.34	21.06	
Elefentes Diver		2552	5.52	15.65	3.56*	19.21 [#]	
Elefantes River	ELEP-130C-SINGU			>500 m³/s (3-5year flood for >5 days)			
		5572	2.57	10.69	5.08*	15.77#	
Limpopo River	LIMP-Y30F-CHOKW			>1600 m³/s (3-5year flood for >7 days).			

Importantly the E-flows proposed for nine of the sites considered return naturally perennial rivers back into their perennial conditions, although reduced flows compared to their natural states. While these reduced flows are significantly lower than natural states they are considerably greater than present flows and should result in considerable improvements to the wellbeing of the Limpopo River. The E-flows established also include some historically seasonal rivers that will remain in their seasonal state, but with improved flows from present. There are only four sites considered in the study which are presently in a perennial state and proposed to remain in this condition to maintain the wellbeing of the Limpopo Basin ecosystem. Sustained perenniality of these rivers will ensure that the ecosystem of these sites have the potential to become sustainable, a recovery from present conditions. The aim of this project was to provide the necessary evidence to determine holistic E-flows for increasing the resilience of communities and ecosystems in the Limpopo Basin to changes in streamflow resulting from basin activities and climate change. This report meets the first part of the aim and includes the E-flow requirements to maintain the ecosystems in a suitable condition. The socio-ecological implications of altered flows, and the benefits of establishing and meeting e-flows are included in the second final report titled: "Risk of altered flows to the ecosystem services of the Limpopo Basin". The PROBFLO holistic e-flow determination approach which incorporates the use of the

RRM-BN risk assessment approach was successfully implemented in the study based on evidence obtained from historical published and grey literature, field surveys during the dry period of 2012 and the wet period of 2019. While the bio-physical data used to represent the relationships between flows and non-flow stressors and ecosystem components exists there is considerable uncertainty associated with the availability of quantitative data, rather than qualitative date for the assessment and repetitions which is my the risk framework established in this assessment should be considered to be an adaptive management tool that can learn from new information and improve risk projection confidence in the future. The E-flow determination process with E-flow results established in this report were used in a final relative risk assessment of multiple flow scenarios including natural, present, E-flows and a continued drought scenario, representing worst climate change possibilities for the region. The approach adopted to undertake this risk assessment and the findings are presented in the final "Risk of altered flows to the ecosystem services of the Limpopo Basin" report which follows this report. The final risk assessment report provides information on relative risk of multiple flow and non-flow stressors that are synergistically affecting the wellbeing of the ecological and social systems of the Limpopo River Basin and how trade-off decisions between use allocation and protection will affect the sustainability of these vulnerable resources.

References

O'Brien GC, Dickens C, Hines E, Wepener V, Stassen R, Quayle L, Fouchy K, MacKenzie J, Graham PM, Landis WG. 2019. A regional-scale ecological risk framework for environmental flow evaluations. *Hydrol. Earth Syst. Sci.* 22: 957-975. https://doi.org/10.5194/hess-22-957-2018.

Appendix B. Rivers EWR Team

The members of the rivers EWR assessment team are listed in **B1**.

Table B1 The rivers EWR assessment team

No.	Position	Name	Organisation
1	EWR task team leader	Dr Karl Reinecke	Southern Waters ER&C
2	DRIFT DSS team leader	Dr Alison Joubert	Southern Waters ER&C
3	Hydrological modelling	Gerald Howard	Pvt
4	Hydraulic modelling	Dr Andrew Birkhead	Streamflow solutions
5	Water quality	Nico Rossouw	Private
6	Geomorphology	Dr Bennie van der Waal	Private
7	Riparian vegetation	James Mackenzie	Private
8	Aquatic invertebrates	Colleen Todd	Private
9	Fish	Dr Mathew Ross	Enviross
10	Socio-economics lead	Dr Jane Turpie	Anchor Environmental
11	Socio-economics	Gwyn Letley	Anchor Environmental
12	EWR assessment advisor	Prof Cate Brown	Southern Waters ER&C
13	Scenario development	Toriso Tlou	Myra Consulting